27,061 research outputs found

    Generating natural language specifications from UML class diagrams

    Get PDF
    Early phases of software development are known to be problematic, difficult to manage and errors occurring during these phases are expensive to correct. Many systems have been developed to aid the transition from informal Natural Language requirements to semistructured or formal specifications. Furthermore, consistency checking is seen by many software engineers as the solution to reduce the number of errors occurring during the software development life cycle and allow early verification and validation of software systems. However, this is confined to the models developed during analysis and design and fails to include the early Natural Language requirements. This excludes proper user involvement and creates a gap between the original requirements and the updated and modified models and implementations of the system. To improve this process, we propose a system that generates Natural Language specifications from UML class diagrams. We first investigate the variation of the input language used in naming the components of a class diagram based on the study of a large number of examples from the literature and then develop rules for removing ambiguities in the subset of Natural Language used within UML. We use WordNet,a linguistic ontology, to disambiguate the lexical structures of the UML string names and generate semantically sound sentences. Our system is developed in Java and is tested on an independent though academic case study

    Pattern Reification as the Basis for Description-Driven Systems

    Full text link
    One of the main factors driving object-oriented software development for information systems is the requirement for systems to be tolerant to change. To address this issue in designing systems, this paper proposes a pattern-based, object-oriented, description-driven system (DDS) architecture as an extension to the standard UML four-layer meta-model. A DDS architecture is proposed in which aspects of both static and dynamic systems behavior can be captured via descriptive models and meta-models. The proposed architecture embodies four main elements - firstly, the adoption of a multi-layered meta-modeling architecture and reflective meta-level architecture, secondly the identification of four data modeling relationships that can be made explicit such that they can be modified dynamically, thirdly the identification of five design patterns which have emerged from practice and have proved essential in providing reusable building blocks for data management, and fourthly the encoding of the structural properties of the five design patterns by means of one fundamental pattern, the Graph pattern. A practical example of this philosophy, the CRISTAL project, is used to demonstrate the use of description-driven data objects to handle system evolution.Comment: 20 pages, 10 figure

    Quality-aware model-driven service engineering

    Get PDF
    Service engineering and service-oriented architecture as an integration and platform technology is a recent approach to software systems integration. Quality aspects ranging from interoperability to maintainability to performance are of central importance for the integration of heterogeneous, distributed service-based systems. Architecture models can substantially influence quality attributes of the implemented software systems. Besides the benefits of explicit architectures on maintainability and reuse, architectural constraints such as styles, reference architectures and architectural patterns can influence observable software properties such as performance. Empirical performance evaluation is a process of measuring and evaluating the performance of implemented software. We present an approach for addressing the quality of services and service-based systems at the model-level in the context of model-driven service engineering. The focus on architecture-level models is a consequence of the black-box character of services

    Just below the surface: developing knowledge management systems using the paradigm of the noetic prism

    Get PDF
    In this paper we examine how the principles embodied in the paradigm of the noetic prism can illuminate the construction of knowledge management systems. We draw on the formalism of the prism to examine three successful tools: frames, spreadsheets and databases, and show how their power and also their shortcomings arise from their domain representation, and how any organisational system based on integration of these tools and conversion between them is inevitably lossy. We suggest how a late-binding, hybrid knowledge based management system (KBMS) could be designed that draws on the lessons learnt from these tools, by maintaining noetica at an atomic level and storing the combinatory processes necessary to create higher level structure as the need arises. We outline the “just-below-the-surface” systems design, and describe its implementation in an enterprise-wide knowledge-based system that has all of the conventional office automation features

    Automated syntactic mediation for Web service integration

    No full text
    As the Web Services and Grid community adopt Semantic Web technology, we observe a shift towards higher-level workflow composition and service discovery practices. While this provides excellent functionality to non-expert users, more sophisticated middleware is required to hide the details of service invocation and service integration. An investigation of a common Bioinformatics use case reveals that the execution of high-level workflow designs requires additional processing to harmonise syntactically incompatible service interfaces. In this paper, we present an architecture to support the automatic reconciliation of data formats in such Web Service worklflows. The mediation of data is driven by ontologies that encapsulate the information contained in heterogeneous data structures supplying a common, conceptual data representation. Data conversion is carried out by a Configurable Mediator component, consuming mappings between \xml schemas and \owl ontologies. We describe our system and give examples of our mapping language against the background of a Bioinformatics use case

    Goal sketching with activity diagrams

    Get PDF
    Goal orientation is acknowledged as an important paradigm in requirements engineering. The structure of a goal-responsibility model provides opportunities for appraising the intention of a development. Creating a suitable model under agile constraints (time, incompleteness and catching up after an initial burst of creativity) can be challenging. Here we propose a marriage of UML activity diagrams with goal sketching in order to facilitate the production of goal responsibility models under these constraints

    Robot graphic simulation testbed

    Get PDF
    The objective of this research was twofold. First, the basic capabilities of ROBOSIM (graphical simulation system) were improved and extended by taking advantage of advanced graphic workstation technology and artificial intelligence programming techniques. Second, the scope of the graphic simulation testbed was extended to include general problems of Space Station automation. Hardware support for 3-D graphics and high processing performance make high resolution solid modeling, collision detection, and simulation of structural dynamics computationally feasible. The Space Station is a complex system with many interacting subsystems. Design and testing of automation concepts demand modeling of the affected processes, their interactions, and that of the proposed control systems. The automation testbed was designed to facilitate studies in Space Station automation concepts

    Intelligent monitoring and diagnosis systems for the Space Station Freedom ECLSS

    Get PDF
    Specific activities in NASA's environmental control and life support system (ECLSS) advanced automation project that is designed to minimize the crew and ground manpower needed for operations are discussed. Various analyses and the development of intelligent software for the initial and evolutionary Space Station Freedom (SSF) ECLSS are described. The following are also discussed: (1) intelligent monitoring and diagnostics applications under development for the ECLSS domain; (2) integration into the MSFC ECLSS hardware testbed; and (3) an evolutionary path from the baseline ECLSS automation to the more advanced ECLSS automation processes
    corecore