147 research outputs found

    Support Vector Machine-based method for predicting subcellular localization of mycobacterial proteins using evolutionary information and motifs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In past number of methods have been developed for predicting subcellular location of eukaryotic, prokaryotic (Gram-negative and Gram-positive bacteria) and human proteins but no method has been developed for mycobacterial proteins which may represent repertoire of potent immunogens of this dreaded pathogen. In this study, attempt has been made to develop method for predicting subcellular location of mycobacterial proteins.</p> <p>Results</p> <p>The models were trained and tested on 852 mycobacterial proteins and evaluated using five-fold cross-validation technique. First SVM (Support Vector Machine) model was developed using amino acid composition and overall accuracy of 82.51% was achieved with average accuracy (mean of class-wise accuracy) of 68.47%. In order to utilize evolutionary information, a SVM model was developed using PSSM (Position-Specific Scoring Matrix) profiles obtained from PSI-BLAST (Position-Specific Iterated BLAST) and overall accuracy achieved was of 86.62% with average accuracy of 73.71%. In addition, HMM (Hidden Markov Model), MEME/MAST (Multiple Em for Motif Elicitation/Motif Alignment and Search Tool) and hybrid model that combined two or more models were also developed. We achieved maximum overall accuracy of 86.8% with average accuracy of 89.00% using combination of PSSM based SVM model and MEME/MAST. Performance of our method was compared with that of the existing methods developed for predicting subcellular locations of Gram-positive bacterial proteins.</p> <p>Conclusion</p> <p>A highly accurate method has been developed for predicting subcellular location of mycobacterial proteins. This method also predicts very important class of proteins that is membrane-attached proteins. This method will be useful in annotating newly sequenced or hypothetical mycobacterial proteins. Based on above study, a freely accessible web server TBpred http://www.imtech.res.in/raghava/tbpred/ has been developed.</p

    Molecular modeling and in silico characterization of Mycobacterium tuberculosis TlyA: Possible misannotation of this tubercle bacilli-hemolysin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The TlyA protein has a controversial function as a virulence factor in <it>Mycobacterium tuberculosis </it>(<it>M. tuberculosis</it>). At present, its dual activity as hemolysin and RNA methyltransferase in <it>M. tuberculosis </it>has been indirectly proposed based on <it>in vitro </it>results. There is no evidence however for TlyA relevance in the survival of tubercle bacilli inside host cells or whether both activities are functionally linked. A thorough analysis of structure prediction for this mycobacterial protein in this study shows the need for reevaluating TlyA's function in virulence.</p> <p>Results</p> <p>Bioinformatics analysis of TlyA identified a ribosomal protein binding domain (S4 domain), located between residues 5 and 68 as well as an FtsJ-like methyltranferase domain encompassing residues 62 and 247, all of which have been previously described in translation machinery-associated proteins. Subcellular localization prediction showed that TlyA lacks a signal peptide and its hydrophobicity profile showed no evidence of transmembrane helices. These findings suggested that it may not be attached to the membrane, which is consistent with a cytoplasmic localization. Three-dimensional modeling of TlyA showed a consensus structure, having a common core formed by a six-stranded β-sheet between two α-helix layers, which is consistent with an RNA methyltransferase structure. Phylogenetic analyses showed high conservation of the <it>tlyA </it>gene among <it>Mycobacterium </it>species. Additionally, the nucleotide substitution rates suggested purifying selection during <it>tlyA </it>gene evolution and the absence of a common ancestor between TlyA proteins and bacterial pore-forming proteins.</p> <p>Conclusion</p> <p>Altogether, our manual <it>in silico </it>curation suggested that TlyA is involved in ribosomal biogenesis and that there is a functional annotation error regarding this protein family in several microbial and plant genomes, including the <it>M. tuberculosis </it>genome.</p

    Validating subcellular localization prediction tools with mycobacterial proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The computational prediction of mycobacterial proteins' subcellular localization is of key importance for proteome annotation and for the identification of new drug targets and vaccine candidates. Several subcellular localization classifiers have been developed over the past few years, which have comprised both general localization and feature-based classifiers. Here, we have validated the ability of different bioinformatics approaches, through the use of SignalP 2.0, TatP 1.0, LipoP 1.0, Phobius, PA-SUB 2.5, PSORTb v.2.0.4 and Gpos-PLoc, to predict secreted bacterial proteins. These computational tools were compared in terms of sensitivity, specificity and Matthew's correlation coefficient (MCC) using a set of mycobacterial proteins having less than 40% identity, none of which are included in the training data sets of the validated tools and whose subcellular localization have been experimentally confirmed. These proteins belong to the TBpred training data set, a computational tool specifically designed to predict mycobacterial proteins.</p> <p>Results</p> <p>A final validation set of 272 mycobacterial proteins was obtained from the initial set of 852 mycobacterial proteins. According to the results of the validation metrics, all tools presented specificity above 0.90, while dispersion sensitivity and MCC values were above 0.22. PA-SUB 2.5 presented the highest values; however, these results might be biased due to the methodology used by this tool. PSORTb v.2.0.4 left 56 proteins out of the classification, while Gpos-PLoc left just one protein out.</p> <p>Conclusion</p> <p>Both subcellular localization approaches had high predictive specificity and high recognition of true negatives for the tested data set. Among those tools whose predictions are not based on homology searches against SWISS-PROT, Gpos-PLoc was the general localization tool with the best predictive performance, while SignalP 2.0 was the best tool among the ones using a feature-based approach. Even though PA-SUB 2.5 presented the highest metrics, it should be taken into account that this tool was trained using all proteins reported in SWISS-PROT, which includes the protein set tested in this study, either as a BLAST search or as a training model.</p

    CoBaltDB: Complete bacterial and archaeal orfeomes subcellular localization database and associated resources

    Get PDF
    International audienceBACKGROUND: The functions of proteins are strongly related to their localization in cell compartments (for example the cytoplasm or membranes) but the experimental determination of the sub-cellular localization of proteomes is laborious and expensive. A fast and low-cost alternative approach is in silico prediction, based on features of the protein primary sequences. However, biologists are confronted with a very large number of computational tools that use different methods that address various localization features with diverse specificities and sensitivities. As a result, exploiting these computer resources to predict protein localization accurately involves querying all tools and comparing every prediction output; this is a painstaking task. Therefore, we developed a comprehensive database, called CoBaltDB, that gathers all prediction outputs concerning complete prokaryotic proteomes. DESCRIPTION: The current version of CoBaltDB integrates the results of 43 localization predictors for 784 complete bacterial and archaeal proteomes (2.548.292 proteins in total). CoBaltDB supplies a simple user-friendly interface for retrieving and exploring relevant information about predicted features (such as signal peptide cleavage sites and transmembrane segments). Data are organized into three work-sets ("specialized tools", "meta-tools" and "additional tools"). The database can be queried using the organism name, a locus tag or a list of locus tags and may be browsed using numerous graphical and text displays. CONCLUSIONS: With its new functionalities, CoBaltDB is a novel powerful platform that provides easy access to the results of multiple localization tools and support for predicting prokaryotic protein localizations with higher confidence than previously possible. CoBaltDB is available at http://www.umr6026.univ-rennes1.fr/english/home/research/basic/software/cobalten

    Prediction of Antimicrobial Peptides Based on Sequence Alignment and Feature Selection Methods

    Get PDF
    Antimicrobial peptides (AMPs) represent a class of natural peptides that form a part of the innate immune system, and this kind of ‘nature's antibiotics’ is quite promising for solving the problem of increasing antibiotic resistance. In view of this, it is highly desired to develop an effective computational method for accurately predicting novel AMPs because it can provide us with more candidates and useful insights for drug design. In this study, a new method for predicting AMPs was implemented by integrating the sequence alignment method and the feature selection method. It was observed that, the overall jackknife success rate by the new predictor on a newly constructed benchmark dataset was over 80.23%, and the Mathews correlation coefficient is 0.73, indicating a good prediction. Moreover, it is indicated by an in-depth feature analysis that the results are quite consistent with the previously known knowledge that some amino acids are preferential in AMPs and that these amino acids do play an important role for the antimicrobial activity. For the convenience of most experimental scientists who want to use the prediction method without the interest to follow the mathematical details, a user-friendly web-server is provided at http://amp.biosino.org/

    Gene ontology based transfer learning for protein subcellular localization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prediction of protein subcellular localization generally involves many complex factors, and using only one or two aspects of data information may not tell the true story. For this reason, some recent predictive models are deliberately designed to integrate multiple heterogeneous data sources for exploiting multi-aspect protein feature information. Gene ontology, hereinafter referred to as <it>GO</it>, uses a controlled vocabulary to depict biological molecules or gene products in terms of biological process, molecular function and cellular component. With the rapid expansion of annotated protein sequences, gene ontology has become a general protein feature that can be used to construct predictive models in computational biology. Existing models generally either concatenated the <it>GO </it>terms into a flat binary vector or applied majority-vote based ensemble learning for protein subcellular localization, both of which can not estimate the individual discriminative abilities of the three aspects of gene ontology.</p> <p>Results</p> <p>In this paper, we propose a Gene Ontology Based Transfer Learning Model (<it>GO-TLM</it>) for large-scale protein subcellular localization. The model transfers the signature-based homologous <it>GO </it>terms to the target proteins, and further constructs a reliable learning system to reduce the adverse affect of the potential false <it>GO </it>terms that are resulted from evolutionary divergence. We derive three <it>GO </it>kernels from the three aspects of gene ontology to measure the <it>GO </it>similarity of two proteins, and derive two other spectrum kernels to measure the similarity of two protein sequences. We use simple non-parametric cross validation to explicitly weigh the discriminative abilities of the five kernels, such that the time & space computational complexities are greatly reduced when compared to the complicated semi-definite programming and semi-indefinite linear programming. The five kernels are then linearly merged into one single kernel for protein subcellular localization. We evaluate <it>GO-TLM </it>performance against three baseline models: <it>MultiLoc, MultiLoc-GO </it>and <it>Euk-mPLoc </it>on the benchmark datasets the baseline models adopted. 5-fold cross validation experiments show that <it>GO-TLM </it>achieves substantial accuracy improvement against the baseline models: 80.38% against model <it>Euk-mPLoc </it>67.40% with <it>12.98% </it>substantial increase; 96.65% and 96.27% against model <it>MultiLoc-GO </it>89.60% and 89.60%, with <it>7.05% </it>and <it>6.67% </it>accuracy increase on dataset <it>MultiLoc plant </it>and dataset <it>MultiLoc animal</it>, respectively; 97.14%, 95.90% and 96.85% against model <it>MultiLoc-GO </it>83.70%, 90.10% and 85.70%, with accuracy increase <it>13.44%</it>, <it>5.8% </it>and <it>11.15% </it>on dataset <it>BaCelLoc plant</it>, dataset <it>BaCelLoc fungi </it>and dataset <it>BaCelLoc animal </it>respectively. For <it>BaCelLoc </it>independent sets, <it>GO-TLM </it>achieves 81.25%, 80.45% and 79.46% on dataset <it>BaCelLoc plant holdout</it>, dataset <it>BaCelLoc plant holdout </it>and dataset <it>BaCelLoc animal holdout</it>, respectively, as compared against baseline model <it>MultiLoc-GO </it>76%, 60.00% and 73.00%, with accuracy increase <it>5.25%</it>, <it>20.45% </it>and <it>6.46%</it>, respectively.</p> <p>Conclusions</p> <p>Since direct homology-based <it>GO </it>term transfer may be prone to introducing noise and outliers to the target protein, we design an explicitly weighted kernel learning system (called Gene Ontology Based Transfer Learning Model, <it>GO-TLM</it>) to transfer to the target protein the known knowledge about related homologous proteins, which can reduce the risk of outliers and share knowledge between homologous proteins, and thus achieve better predictive performance for protein subcellular localization. Cross validation and independent test experimental results show that the homology-based <it>GO </it>term transfer and explicitly weighing the <it>GO </it>kernels substantially improve the prediction performance.</p

    Analysis and prediction of cancerlectins using evolutionary and domain information

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Predicting the function of a protein is one of the major challenges in the post-genomic era where a large number of protein sequences of unknown function are accumulating rapidly. Lectins are the proteins that specifically recognize and bind to carbohydrate moieties present on either proteins or lipids. Cancerlectins are those lectins that play various important roles in tumor cell differentiation and metastasis. Although the two types of proteins are linked, still there is no computational method available that can distinguish cancerlectins from the large pool of non-cancerlectins. Hence, it is imperative to develop a method that can distinguish between cancer and non-cancerlectins.</p> <p>Results</p> <p>All the models developed in this study are based on a non-redundant dataset containing 178 cancerlectins and 226 non-cancerlectins in which no two sequences have more than 50% sequence similarity. We have applied the similarity search based technique, i.e. BLAST, and achieved a maximum accuracy of 43.25%. The amino acids compositional analysis have shown that certain residues (e.g. Leucine, Proline) were preferred in cancerlectins whereas some other (e.g. Asparatic acid, Asparagine) were preferred in non-cancerlectins. It has been found that the PROSITE domain "Crystalline beta gamma" was abundant in cancerlectins whereas domains like "SUEL-type lectin domain" were found mainly in non-cancerlectins. An SVM-based model has been developed to differentiate between the cancer and non-cancerlectins which achieved a maximum Matthew's correlation coefficient (MCC) value of 0.32 with an accuracy of 64.84%, using amino acid compositions. We have developed a model based on dipeptide compositions which achieved an MCC value of 0.30 with an accuracy of 64.84%. Thereafter, we have developed models based on split compositions (2 and 4 parts) and achieved an MCC value of 0.31, 0.32 with accuracies of 65.10% and 66.09%, respectively. An SVM model based on Position Specific Scoring Matrix (PSSM), generated by PSI-BLAST, was developed and achieved an MCC value of 0.36 with an accuracy of 68.34%. Finally, we have integrated the PROSITE domain information with PSSM and developed an SVM model that has achieved an MCC value of 0.38 with 69.09% accuracy.</p> <p>Conclusion</p> <p>BLAST has been found inefficient to distinguish between cancer and non-cancerlectins. We analyzed the protein sequences of cancer and non-cancerlectins and identified interesting patterns. We have been able to identify PROSITE domains that are preferred in cancer and non-cancerlectins and thus provided interesting insights into the two types of proteins. The method developed in this study will be useful for researchers studying cancerlectins, lectins and cancer biology. The web-server based on the above study, is available at <url>http://www.imtech.res.in/raghava/cancer_pred/</url></p

    Identification of Mannose Interacting Residues Using Local Composition

    Get PDF
    BACKGROUND: Mannose binding proteins (MBPs) play a vital role in several biological functions such as defense mechanisms. These proteins bind to mannose on the surface of a wide range of pathogens and help in eliminating these pathogens from our body. Thus, it is important to identify mannose interacting residues (MIRs) in order to understand mechanism of recognition of pathogens by MBPs. RESULTS: This paper describes modules developed for predicting MIRs in a protein. Support vector machine (SVM) based models have been developed on 120 mannose binding protein chains, where no two chains have more than 25% sequence similarity. SVM models were developed on two types of datasets: 1) main dataset consists of 1029 mannose interacting and 1029 non-interacting residues, 2) realistic dataset consists of 1029 mannose interacting and 10320 non-interacting residues. In this study, firstly, we developed standard modules using binary and PSSM profile of patterns and got maximum MCC around 0.32. Secondly, we developed SVM modules using composition profile of patterns and achieved maximum MCC around 0.74 with accuracy 86.64% on main dataset. Thirdly, we developed a model on a realistic dataset and achieved maximum MCC of 0.62 with accuracy 93.08%. Based on this study, a standalone program and web server have been developed for predicting mannose interacting residues in proteins (http://www.imtech.res.in/raghava/premier/). CONCLUSIONS: Compositional analysis of mannose interacting and non-interacting residues shows that certain types of residues are preferred in mannose interaction. It was also observed that residues around mannose interacting residues have a preference for certain types of residues. Composition of patterns/peptide/segment has been used for predicting MIRs and achieved reasonable high accuracy. It is possible that this novel strategy may be effective to predict other types of interacting residues. This study will be useful in annotating the function of protein as well as in understanding the role of mannose in the immune system

    Support vector machine (SVM) based multiclass prediction with basic statistical analysis of plasminogen activators

    Get PDF
    Plasminogen (Pg), the precursor of the proteolytic and fibrinolytic enzyme of blood, is converted to the active enzyme plasmin (Pm) by different plasminogen activators (tissue plasminogen activators and urokinase), including the bacterial activators streptokinase and staphylokinase, which activate Pg to Pm and thus are used clinically for thrombolysis. The identification of Pg-activators is therefore an important step in understanding their functional mechanism and derives new therapies
    corecore