260,906 research outputs found

    Partitioning Clustering Based on Support Vector Ranking

    Get PDF
    Postprin

    Support Vector Motion Clustering

    Get PDF
    This work was supported in part by the Erasmus Mundus Joint Doctorate in Interactive and Cognitive Environments (which is funded by the EACEA Agency of the European Commission under EMJD ICE FPA n 2010-0012) and by the Artemis JU and the UK Technology Strategy Board through COPCAMS Project under Grant 332913

    External Support Vector Machine Clustering

    Get PDF
    The external-Support Vector Machine (SVM) clustering algorithm clusters data vectors with no a priori knowledge of each vector\u27s class. The algorithm works by first running a binary SVM against a data set, with each vector in the set randomly labeled, until the SVM converges. It then relabels data points that are mislabeled and a large distance from the SVM hyperplane. The SVM is then iteratively rerun followed by more label swapping until no more progress can be made. After this process, a high percentage of the previously unknown class labels of the data set will be known. With sub-cluster identification upon iterating the overall algorithm on the positive and negative clusters identified (until the clusters are no longer separable into sub-clusters), this method provides a way to cluster data sets without prior knowledge of the data\u27s clustering characteristics, or the number of clusters

    External Support Vector Machine Clustering

    Get PDF
    The external-Support Vector Machine (SVM) clustering algorithm clusters data vectors with no a priori knowledge of each vector\u27s class. The algorithm works by first running a binary SVM against a data set, with each vector in the set randomly labeled, until the SVM converges. It then relabels data points that are mislabeled and a large distance from the SVM hyperplane. The SVM is then iteratively rerun followed by more label swapping until no more progress can be made. After this process, a high percentage of the previously unknown class labels of the data set will be known. With sub-cluster identification upon iterating the overall algorithm on the positive and negative clusters identified (until the clusters are no longer separable into sub-clusters), this method provides a way to cluster data sets without prior knowledge of the data\u27s clustering characteristics, or the number of clusters

    Clustering categories in support vector machines

    Get PDF
    The support vector machine (SVM) is a state-of-the-art method in supervised classification. In this paper the Cluster Support Vector Machine (CLSVM) methodology is proposed with the aim to increase the sparsity of the SVM classifier in the presence of categorical features, leading to a gain in interpretability. The CLSVM methodology clusters categories and builds the SVM classifier in the clustered feature space. Four strategies for building the CLSVM classifier are presented based on solving: the SVM formulation in the original feature space, a quadratically constrained quadratic programming formulation, and a mixed integer quadratic programming formulation as well as its continuous relaxation. The computational study illustrates the performance of the CLSVM classifier using two clusters. In the tested datasets our methodology achieves comparable accuracy to that of the SVM in the original feature space, with a dramatic increase in sparsity.Ministerio de Economía y CompetitividadJunta de Andalucí

    Forecasting bus passenger flows by using a clustering-based support vector regression approach

    Get PDF
    As a significant component of the intelligent transportation system, forecasting bus passenger flows plays a key role in resource allocation, network planning, and frequency setting. However, it remains challenging to recognize high fluctuations, nonlinearity, and periodicity of bus passenger flows due to varied destinations and departure times. For this reason, a novel forecasting model named as affinity propagation-based support vector regression (AP-SVR) is proposed based on clustering and nonlinear simulation. For the addressed approach, a clustering algorithm is first used to generate clustering-based intervals. A support vector regression (SVR) is then exploited to forecast the passenger flow for each cluster, with the use of particle swarm optimization (PSO) for obtaining the optimized parameters. Finally, the prediction results of the SVR are rearranged by chronological order rearrangement. The proposed model is tested using real bus passenger data from a bus line over four months. Experimental results demonstrate that the proposed model performs better than other peer models in terms of absolute percentage error and mean absolute percentage error. It is recommended that the deterministic clustering technique with stable cluster results (AP) can improve the forecasting performance significantly.info:eu-repo/semantics/publishedVersio

    Clustering Via Supervised Support Vector Machines

    Get PDF
    An SVM-based clustering algorithm is introduced that clusters data with no a priori knowledge of input classes. The algorithm initializes by first running a binary SVM classifier against a data set with each vector in the set randomly labeled. Once this initialization step is complete, the SVM confidence parameters for classification on each of the training instances can be accessed. The lowest confidence data (e.g., the worst of the mislabeled data) then has its labels switched to the other class label. The SVM is then re-run on the data set (with partly re-labeled data). The repetition of the above process improves the separability until there is no misclassification. Variations on this type of clustering approach are shown
    corecore