9,685 research outputs found

    Kernel Spectral Clustering and applications

    Full text link
    In this chapter we review the main literature related to kernel spectral clustering (KSC), an approach to clustering cast within a kernel-based optimization setting. KSC represents a least-squares support vector machine based formulation of spectral clustering described by a weighted kernel PCA objective. Just as in the classifier case, the binary clustering model is expressed by a hyperplane in a high dimensional space induced by a kernel. In addition, the multi-way clustering can be obtained by combining a set of binary decision functions via an Error Correcting Output Codes (ECOC) encoding scheme. Because of its model-based nature, the KSC method encompasses three main steps: training, validation, testing. In the validation stage model selection is performed to obtain tuning parameters, like the number of clusters present in the data. This is a major advantage compared to classical spectral clustering where the determination of the clustering parameters is unclear and relies on heuristics. Once a KSC model is trained on a small subset of the entire data, it is able to generalize well to unseen test points. Beyond the basic formulation, sparse KSC algorithms based on the Incomplete Cholesky Decomposition (ICD) and L0L_0, L1,L0+L1L_1, L_0 + L_1, Group Lasso regularization are reviewed. In that respect, we show how it is possible to handle large scale data. Also, two possible ways to perform hierarchical clustering and a soft clustering method are presented. Finally, real-world applications such as image segmentation, power load time-series clustering, document clustering and big data learning are considered.Comment: chapter contribution to the book "Unsupervised Learning Algorithms

    Sparse Allreduce: Efficient Scalable Communication for Power-Law Data

    Full text link
    Many large datasets exhibit power-law statistics: The web graph, social networks, text data, click through data etc. Their adjacency graphs are termed natural graphs, and are known to be difficult to partition. As a consequence most distributed algorithms on these graphs are communication intensive. Many algorithms on natural graphs involve an Allreduce: a sum or average of partitioned data which is then shared back to the cluster nodes. Examples include PageRank, spectral partitioning, and many machine learning algorithms including regression, factor (topic) models, and clustering. In this paper we describe an efficient and scalable Allreduce primitive for power-law data. We point out scaling problems with existing butterfly and round-robin networks for Sparse Allreduce, and show that a hybrid approach improves on both. Furthermore, we show that Sparse Allreduce stages should be nested instead of cascaded (as in the dense case). And that the optimum throughput Allreduce network should be a butterfly of heterogeneous degree where degree decreases with depth into the network. Finally, a simple replication scheme is introduced to deal with node failures. We present experiments showing significant improvements over existing systems such as PowerGraph and Hadoop
    • …
    corecore