16,534 research outputs found

    Uncovering Bugs in Distributed Storage Systems during Testing (not in Production!)

    Get PDF
    Testing distributed systems is challenging due to multiple sources of nondeterminism. Conventional testing techniques, such as unit, integration and stress testing, are ineffective in preventing serious but subtle bugs from reaching production. Formal techniques, such as TLA+, can only verify high-level specifications of systems at the level of logic-based models, and fall short of checking the actual executable code. In this paper, we present a new methodology for testing distributed systems. Our approach applies advanced systematic testing techniques to thoroughly check that the executable code adheres to its high-level specifications, which significantly improves coverage of important system behaviors. Our methodology has been applied to three distributed storage systems in the Microsoft Azure cloud computing platform. In the process, numerous bugs were identified, reproduced, confirmed and fixed. These bugs required a subtle combination of concurrency and failures, making them extremely difficult to find with conventional testing techniques. An important advantage of our approach is that a bug is uncovered in a small setting and witnessed by a full system trace, which dramatically increases the productivity of debugging

    KYPO Cyber Range: Design and Use Cases

    Get PDF
    The physical and cyber worlds are increasingly intertwined and exposed to cyber attacks. The KYPO cyber range provides complex cyber systems and networks in a virtualized, fully controlled and monitored environment. Time-efficient and cost-effective deployment is feasible using cloud resources instead of a dedicated hardware infrastructure. This paper describes the design decisions made during it’s development. We prepared a set of use cases to evaluate the proposed design decisions and to demonstrate the key features of the KYPO cyber range. It was especially cyber training sessions and exercises with hundreds of participants which provided invaluable feedback for KYPO platform development

    Infrastructure as Code for Cybersecurity Training

    Get PDF

    Design and Emergence of a Pedagogical Online InfoSec Laboratory as an Ensemble Artefact

    Get PDF
    Information security (InfoSec) education becomes increasingly important. Building hands-on capabilities to tackle challenges is a precondition to mitigate and eliminate cyber threats. Existing studies, however, show that the field lacks pedagogically founded information security laboratories that can be used flexibly to educate both on-campus and online learners. To address this issue, this paper reports on an online InfoSec laboratory. Development of the laboratory follows an action design research approach. For this purpose, initial design principles were used that are derived from the existing pedagogical theories such as Conversational Framework, Constructive Alignment, and Personalized System of Instruction, literature reviews and empirical data. Through iterative cycles of building, intervention, and evaluation of an InfoSec laboratory, and side-by-side critical reflections, this study refines the conceptual model of an online InfoSec laboratory and initial design principles and provides general guidelines on the process of establishing a pedagogically underpinned online InfoSec laboratory for hands-on exercises. This study contributes by serving two major purposes. First, this study proposes a conceptual model of an online InfoSec laboratory that comprises important entities: Laboratory Infrastructure, Exercise (document), Exercise Processing and Management Interface (EPI), and Concrete Exercise Interface. Secondly, the research proposes design principles for implementing a conceptual model of an online InfoSec laboratory in different educational contexts

    Big Data and the Internet of Things

    Full text link
    Advances in sensing and computing capabilities are making it possible to embed increasing computing power in small devices. This has enabled the sensing devices not just to passively capture data at very high resolution but also to take sophisticated actions in response. Combined with advances in communication, this is resulting in an ecosystem of highly interconnected devices referred to as the Internet of Things - IoT. In conjunction, the advances in machine learning have allowed building models on this ever increasing amounts of data. Consequently, devices all the way from heavy assets such as aircraft engines to wearables such as health monitors can all now not only generate massive amounts of data but can draw back on aggregate analytics to "improve" their performance over time. Big data analytics has been identified as a key enabler for the IoT. In this chapter, we discuss various avenues of the IoT where big data analytics either is already making a significant impact or is on the cusp of doing so. We also discuss social implications and areas of concern.Comment: 33 pages. draft of upcoming book chapter in Japkowicz and Stefanowski (eds.) Big Data Analysis: New algorithms for a new society, Springer Series on Studies in Big Data, to appea

    An Efficient Transport Protocol for delivery of Multimedia An Efficient Transport Protocol for delivery of Multimedia Content in Wireless Grids

    Get PDF
    A grid computing system is designed for solving complicated scientific and commercial problems effectively,whereas mobile computing is a traditional distributed system having computing capability with mobility and adopting wireless communications. Media and Entertainment fields can take advantage from both paradigms by applying its usage in gaming applications and multimedia data management. Multimedia data has to be stored and retrieved in an efficient and effective manner to put it in use. In this paper, we proposed an application layer protocol for delivery of multimedia data in wireless girds i.e. multimedia grid protocol (MMGP). To make streaming efficient a new video compression algorithm called dWave is designed and embedded in the proposed protocol. This protocol will provide faster, reliable access and render an imperceptible QoS in delivering multimedia in wireless grid environment and tackles the challenging issues such as i) intermittent connectivity, ii) device heterogeneity, iii) weak security and iv) device mobility.Comment: 20 pages, 15 figures, Peer Reviewed Journa
    corecore