72 research outputs found

    Human Interaction with Robot Swarms: A Survey

    Get PDF
    Recent advances in technology are delivering robots of reduced size and cost. A natural outgrowth of these advances are systems comprised of large numbers of robots that collaborate autonomously in diverse applications. Research on effective autonomous control of such systems, commonly called swarms, has increased dramatically in recent years and received attention from many domains, such as bioinspired robotics and control theory. These kinds of distributed systems present novel challenges for the effective integration of human supervisors, operators, and teammates that are only beginning to be addressed. This paper is the first survey of human–swarm interaction (HSI) and identifies the core concepts needed to design a human–swarm system. We first present the basics of swarm robotics. Then, we introduce HSI from the perspective of a human operator by discussing the cognitive complexity of solving tasks with swarm systems. Next, we introduce the interface between swarm and operator and identify challenges and solutions relating to human–swarm communication, state estimation and visualization, and human control of swarms. For the latter, we develop a taxonomy of control methods that enable operators to control swarms effectively. Finally, we synthesize the results to highlight remaining challenges, unanswered questions, and open problems for HSI, as well as how to address them in future works

    A Model for Geographically Distributed Combat Interactions of Swarming

    Get PDF
    17 USC 105 interim-entered record; under review.This article describes the Distributed Interaction Campaign Model (DICM), an exploratory campaign analysis tool and asset allocation decision-aid for managing geographically distributed and swarming naval and air forces. The model is capable of fast operation, while accounting for uncertainty in an opponent’s plan. It is intended for use by commanders and analysts who have limited time for model runs, or a finite budget. The model is purpose-built for the Pentagon’s Office of Net Assessment, and supports analysis of the following questions: What happens when swarms of geographically distributed naval and air forces engage each other and what are the key elements of the opponents’ force to attack? Are there changes to force structure that make a force more effective, and what impacts will disruptions in enemy command and control and wide-area surveillance have? Which insights are to be gained by fast exploratory mathematical/computational campaign analysis to augment and replace expensive and time-consuming simulations? An illustrative example of model use is described in a simple test scenario.Identified in text as U.S. Government work

    Local information-based control for probabilistic swarm distribution guidance

    Get PDF
    This paper proposes a closed-loop decentralised framework for swarm distribution guidance, which disperses homogeneous agents over bins to achieve a desired density distribution by using feedback gains from the current swarm status. The key difference from existing works is that the proposed framework utilises only local information, not global information ,to generate the feedback gains for stochastic policies. Dependency on local information entails various advantages including reduced inter-agent communication, a shorter timescale for obtaining new information, asynchronous implementation, and deployability without a priori mission knowledge. Our theoretical analysis shows that, even utilising only local information, the proposed framework guarantees convergence of the agents to the desired status, while maintaining the advantages of existing closed-loop approaches. Also, the analysis explicitly provides the design requirements to achieve all the advantages of the proposed framework. We provide implementation examples and report the results of empirical tests. The test results confirm the effectiveness of the proposed framework and also validate the robustness enhancement in a scenario of partial disconnection of the communication network

    Abstractions, Analysis Techniques, and Synthesis of Scalable Control Strategies for Robot Swarms

    Get PDF
    Tasks that require parallelism, redundancy, and adaptation to dynamic, possibly hazardous environments can potentially be performed very efficiently and robustly by a swarm robotic system. Such a system would consist of hundreds or thousands of anonymous, resource-constrained robots that operate autonomously, with little to no direct human supervision. The massive parallelism of a swarm would allow it to perform effectively in the event of robot failures, and the simplicity of individual robots facilitates a low unit cost. Key challenges in the development of swarm robotic systems include the accurate prediction of swarm behavior and the design of robot controllers that can be proven to produce a desired macroscopic outcome. The controllers should be scalable, meaning that they ensure system operation regardless of the swarm size. This thesis presents a comprehensive approach to modeling a swarm robotic system, analyzing its performance, and synthesizing scalable control policies that cause the populations of different swarm elements to evolve in a specified way that obeys time and efficiency constraints. The control policies are decentralized, computed a priori, implementable on robots with limited sensing and communication capabilities, and have theoretical guarantees on performance. To facilitate this framework of abstraction and top-down controller synthesis, the swarm is designed to emulate a system of chemically reacting molecules. The majority of this work considers well-mixed systems when there are interaction-dependent task transitions, with some modeling and analysis extensions to spatially inhomogeneous systems. The methodology is applied to the design of a swarm task allocation approach that does not rely on inter-robot communication, a reconfigurable manufacturing system, and a cooperative transport strategy for groups of robots. The third application incorporates observations from a novel experimental study of the mechanics of cooperative retrieval in Aphaenogaster cockerelli ants. The correctness of the abstractions and the correspondence of the evolution of the controlled system to the target behavior are validated with computer simulations. The investigated applications form the building blocks for a versatile swarm system with integrated capabilities that have performance guarantees

    Cyber-Agricultural Systems for Crop Breeding and Sustainable Production

    Get PDF
    The Cyber-Agricultural System (CAS) Represents an overarching Framework of Agriculture that Leverages Recent Advances in Ubiquitous Sensing, Artificial Intelligence, Smart Actuators, and Scalable Cyberinfrastructure (CI) in Both Breeding and Production Agriculture. We Discuss the Recent Progress and Perspective of the Three Fundamental Components of CAS – Sensing, Modeling, and Actuation – and the Emerging Concept of Agricultural Digital Twins (DTs). We Also Discuss How Scalable CI is Becoming a Key Enabler of Smart Agriculture. in This Review We Shed Light on the Significance of CAS in Revolutionizing Crop Breeding and Production by Enhancing Efficiency, Productivity, Sustainability, and Resilience to Changing Climate. Finally, We Identify Underexplored and Promising Future Directions for CAS Research and Development

    Effective task allocation frameworks for large-scale multiple agent systems.

    Get PDF
    This research aims to develop innovative and transformative decision-making frameworks that enable a large-scale multi-robot system, called robotic swarm, to autonomously address multi-robot task allocation problem: given a set of complicated tasks, requiring cooperation, how to partition themselves into subgroups (or called coalitions) and assign the subgroups to each task while maximising the system performance. The frameworks should be executable based on local information in a decentralised manner, operable for a wide range of the system size (i.e., scalable), predictable in terms of collective behaviours, adaptable to dynamic environments, operable asynchronously, and preferably able to accommodate heterogeneous agents. Firstly, for homogeneous robots, this thesis proposes two frameworks based on biological inspiration and game theories, respectively. The former, called LICA-MC (Markov-Chan-based approach under Local Information Consistency Assumption), is inspired by fish in nature: despite insufficient awareness of the entire group, they are well-coordinated by sensing social distances from neighbours. Analogously, each agent in the framework relies only on local information and requires its local consistency over neighbouring agents to adaptively generate the stochastic policy. This feature offers various advantages such as less inter-agent communication, a shorter timescale for using new information, and the potential to accommodate asynchronous behaviours of agents. We prove that the agents can converge to a desired collective status without resorting to any global information, while maintaining scalability, flexibility, and long-term system efficiency. Numerical experiments show that the framework is robust in a realistic environment where information sharing over agents is partially and temporarily disconnected. Furthermore, we explicitly present the design requirements to have all these advantages, and implementation examples concerning travelling costs minimisation, over-congestion avoidance, and quorum models, respectively. The game-theoretical framework, called GRAPE (GRoup Agent Partitioning and placing Event), regards each robot as a self-interested player attempting to join the most preferred coalition according to its individual preferences regarding the size of each coalition. We prove that selfish agents who have social inhibition can always converge to a Nash stable partition (i.e., a social agreement) within polynomial time under the proposed framework. The framework is executable based on local interactions with neighbour agents under a strongly-connected communication network and even in asynchronous environments. This study analyses an outcome’s minimum-guaranteed suboptimality, and additionally shows that at least 50% is guaranteed if social utilities are non-decreasing functions with respect to the number of co-working agents. Numerical experiments confirm that the framework is scalable, fast adaptable against dynamical environments, and robust even in a realistic situation where some of the agents temporarily halt operation during a mission. The two proposed frameworks are compared in the domain of division of labour. Empirical results show that LICA-MC provides excellent scalability with respect to the number of agents, whereas GRAPE has polynomial complexity but is more efficient in terms of convergence time (especially when accommodating a moderate number of robots) and total travelling costs. It also turns out that GRAPE is sensitive to traffic congestion, meanwhile LICA-MC suffers from slower robot speed. We discuss other implicit advantages of the frameworks such as mission suitability and additionally-builtin decision-making functions. Importantly, it is found that GRAPE has the potential to accommodate heterogeneous agents to some extent, which is not the case for LICA-MC. Accordingly, this study attempts to extend GRAPE to incorporate the heterogeneity of agents. Particularly, we consider the case where each task has its minimum workload requirement to be fulfilled by multiple agents and the agents have different work capacities and costs depending on the tasks. The objective is to find an assignment that minimises the total cost of assigned agents while satisfying the requirements. GRAPE cannot be directly used because of the heterogeneity, so we adopt tabu-learning heuristics where an agent penalises its previously chosen coalition whenever it changes decision: this variant is called T-GRAPE. We prove that, by doing so, a Nash stable partition is always guaranteed to be determined in a decentralised manner. Experi-mental results present the properties of the proposed approach regarding suboptimality and algorithmic complexity. Finally, the thesis addresses a more complex decision-making problem involving team formation, team-to-task assignment, agent-to-working-position selection, fair resource allocation concerning tasks’ minimum requirements for completion, and trajectory optimisation with collision avoidance. We propose an integrated framework that decouples the original problem into three subproblems (i.e., coalition formation, position allocation, and path planning) and deals with them sequentially by three respective modules. The coalition formation module based on T-GRAPE deals with a max-min problem, balancing the work resources of agents in proportion to the task’s requirements. We show that, given reasonable assumptions, the position allocation subproblem can be solved efficiently in terms of computational complexity. For the path planning, we utilise an MPC-SCP (Model Predictive Control and Sequential Convex Programming) approach that enables the agents to produce collision-free trajectories. As a proof of concept, we implement the framework into a cooperative stand-in jamming mission scenario using multiple UAVs. Numerical experiments suggest that the framework could be computationally feasible, fault-tolerant, and near-optimal. Comparison of the proposed frameworks for multi-robot task allocation is discussed in the last chapter regarding the desired features described at first (i.e., decentralisation, scalability, predictability, flexibility, asynchronisation, heterogeneity), along with future work and possible applications in other domains.PhD in Aerospac

    Foundations of Trusted Autonomy

    Get PDF
    Trusted Autonomy; Automation Technology; Autonomous Systems; Self-Governance; Trusted Autonomous Systems; Design of Algorithms and Methodologie

    Controllability and Stabilization of Kolmogorov Forward Equations for Robotic Swarms

    Get PDF
    abstract: Numerous works have addressed the control of multi-robot systems for coverage, mapping, navigation, and task allocation problems. In addition to classical microscopic approaches to multi-robot problems, which model the actions and decisions of individual robots, lately, there has been a focus on macroscopic or Eulerian approaches. In these approaches, the population of robots is represented as a continuum that evolves according to a mean-field model, which is directly designed such that the corresponding robot control policies produce target collective behaviours. This dissertation presents a control-theoretic analysis of three types of mean-field models proposed in the literature for modelling and control of large-scale multi-agent systems, including robotic swarms. These mean-field models are Kolmogorov forward equations of stochastic processes, and their analysis is motivated by the fact that as the number of agents tends to infinity, the empirical measure associated with the agents converges to the solution of these models. Hence, the problem of transporting a swarm of agents from one distribution to another can be posed as a control problem for the forward equation of the process that determines the time evolution of the swarm density. First, this thesis considers the case in which the agents' states evolve on a finite state space according to a continuous-time Markov chain (CTMC), and the forward equation is an ordinary differential equation (ODE). Defining the agents' task transition rates as the control parameters, the finite-time controllability, asymptotic controllability, and stabilization of the forward equation are investigated. Second, the controllability and stabilization problem for systems of advection-diffusion-reaction partial differential equations (PDEs) is studied in the case where the control parameters include the agents' velocity as well as transition rates. Third, this thesis considers a controllability and optimal control problem for the forward equation in the more general case where the agent dynamics are given by a nonlinear discrete-time control system. Beyond these theoretical results, this thesis also considers numerical optimal transport for control-affine systems. It is shown that finite-volume approximations of the associated PDEs lead to well-posed transport problems on graphs as long as the control system is controllable everywhere.Dissertation/ThesisDoctoral Dissertation Mechanical Engineering 201
    • …
    corecore