8,631 research outputs found

    Supervisor Localization of Discrete-Event Systems based on State Tree Structures

    Full text link
    Recently we developed supervisor localization, a top-down approach to distributed control of discrete-event systems in the Ramadge-Wonham supervisory control framework. Its essence is the decomposition of monolithic (global) control action into local control strategies for the individual agents. In this paper, we establish a counterpart supervisor localization theory in the framework of State Tree Structures, known to be efficient for control design of very large systems. In the new framework, we introduce the new concepts of local state tracker, local control function, and state-based local-global control equivalence. As before, we prove that the collective localized control behavior is identical to the monolithic optimal (i.e. maximally permissive) and nonblocking controlled behavior. In addition, we propose a new and more efficient localization algorithm which exploits BDD computation. Finally we demonstrate our localization approach on a model for a complex semiconductor manufacturing system

    Reconfigurable Timed Discrete-Event Systems

    Full text link
    In this paper, we present the first general solution to the automatic reconfiguration problem of timed discrete-event systems. We extend the recursive forcible backtracking approach which had been already solved the automatic reconfiguration problem of untimed discrete-event systems. In particular, we first solve the timed centralized reconfiguration problem using a specific timed eligibility set. Then, we study the identity between the solutions to an arbitrary timed centralized reconfiguration problem and its corresponding decentralized version. It turns out that the solutions to both cases are identical to each other. So, the solution obtained by the proposed theory is interestingly invariant to systematic distributions.Comment: 2020 24th International Conference on System Theory, Control and Computing (ICSTCC

    Structuring Multilevel Discrete-Event Systems With Dependence Structure Matrices

    Get PDF
    Despite the correct-by-construction property, one of the major drawbacks of supervisory control synthesis is state-space explosion. Several approaches have been proposed to overcome this computational difficulty, such as modular, hierarchical, decentralized, and multilevel supervisory control synthesis. Unfortunately, the modeler needs to provide additional information about the system's structure or controller's structure as input for most of these nonmonolithic synthesis procedures. Multilevel synthesis assumes that the system is provided in a tree-structured format, which may resemble a system decomposition. In this paper, we present a systematic approach to transform a set of plant models and a set of requirement models provided as extended finite automata into a tree-structured multilevel discrete-event system to which multilevel supervisory control synthesis can be applied. By analyzing the dependencies between the plants and the requirements using dependence structure matrix techniques, a multilevel clustering can be calculated. With the modeling framework of extended finite automata, plant models and requirements depend on each other when they share events or variables. We report on experimental results of applying the algorithm's implementation on several models available in the literature to assess the applicability of the proposed method. The benefit of multilevel synthesis based on the calculated clustering is significant for most large-scale systems

    Distributed Supervisory Control of Discrete-Event Systems with Communication Delay

    Full text link
    This paper identifies a property of delay-robustness in distributed supervisory control of discrete-event systems (DES) with communication delays. In previous work a distributed supervisory control problem has been investigated on the assumption that inter-agent communications take place with negligible delay. From an applications viewpoint it is desirable to relax this constraint and identify communicating distributed controllers which are delay-robust, namely logically equivalent to their delay-free counterparts. For this we introduce inter-agent channels modeled as 2-state automata, compute the overall system behavior, and present an effective computational test for delay-robustness. From the test it typically results that the given delay-free distributed control is delay-robust with respect to certain communicated events, but not for all, thus distinguishing events which are not delay-critical from those that are. The approach is illustrated by a workcell model with three communicating agents

    Light at the end of the tunnel:Synthesis-based engineering for road tunnels

    Get PDF

    Coverage and Time-optimal Motion Planning for Autonomous Vehicles

    Get PDF
    Autonomous vehicles are rapidly advancing with a variety of applications, such as area surveillance, environment mapping, and intelligent transportation. These applications require coverage and/or time-optimal motion planning, where the major challenges include uncertainties in the environment, motion constraints of vehicles, limited energy resources and potential failures. While dealing with these challenges in various capacities, this dissertation addresses three fundamental motion planning problems: (1) single-robot complete coverage in unknown environment, (2) multi-robot resilient and efficient coverage in unknown environment, and (3) time-optimal risk-aware motion planning for curvature-constrained vehicles. First, the ε* algorithm is developed for online coverage path planning in unknown environment using a single autonomous vehicle. It is computationally efficient, and can generate the desired back-and-forth path with less turns and overlappings. ε* prevents the local extrema problem, thus can guarantee complete coverage. Second, the CARE algorithm is developed which extends ε* for multi-robot resilient and efficient coverage in unknown environment. In case of failures, CARE guarantees complete coverage via dynamic task reallocations of other vehicles, hence provides resilience. Moreover, it reallocates idling vehicles to support others in their tasks, hence improves efficiency. Finally, the T* algorithm is developed to find the time-optimal risk-aware path for curvature-constrained vehicles. We present a novel risk function based on the concept of collision time, and integrate it with the time cost for optimization. The above-mentioned algorithms have been validated via simulations in complex scenarios and/or real experiments, and the results have shown clear advantages over existing popular approaches

    An algebra of discrete event processes

    Get PDF
    This report deals with an algebraic framework for modeling and control of discrete event processes. The report consists of two parts. The first part is introductory, and consists of a tutorial survey of the theory of concurrency in the spirit of Hoare's CSP, and an examination of the suitability of such an algebraic framework for dealing with various aspects of discrete event control. To this end a new concurrency operator is introduced and it is shown how the resulting framework can be applied. It is further shown that a suitable theory that deals with the new concurrency operator must be developed. In the second part of the report the formal algebra of discrete event control is developed. At the present time the second part of the report is still an incomplete and occasionally tentative working paper

    Development of a cognitive robotic system for simple surgical tasks

    Get PDF
    The introduction of robotic surgery within the operating rooms has significantly improved the quality of many surgical procedures. Recently, the research on medical robotic systems focused on increasing the level of autonomy in order to give them the possibility to carry out simple surgical actions autonomously. This paper reports on the development of technologies for introducing automation within the surgical workflow. The results have been obtained during the ongoing FP7 European funded project Intelligent Surgical Robotics (I-SUR). The main goal of the project is to demonstrate that autonomous robotic surgical systems can carry out simple surgical tasks effectively and without major intervention by surgeons. To fulfil this goal, we have developed innovative solutions (both in terms of technologies and algorithms) for the following aspects: fabrication of soft organ models starting from CT images, surgical planning and execution of movement of robot arms in contact with a deformable environment, designing a surgical interface minimizing the cognitive load of the surgeon supervising the actions, intra-operative sensing and reasoning to detect normal transitions and unexpected events. All these technologies have been integrated using a component-based software architecture to control a novel robot designed to perform the surgical actions under study. In this work we provide an overview of our system and report on preliminary results of the automatic execution of needle insertion for the cryoablation of kidney tumours
    • …
    corecore