1,794 research outputs found

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Semantic Object Parsing with Local-Global Long Short-Term Memory

    Full text link
    Semantic object parsing is a fundamental task for understanding objects in detail in computer vision community, where incorporating multi-level contextual information is critical for achieving such fine-grained pixel-level recognition. Prior methods often leverage the contextual information through post-processing predicted confidence maps. In this work, we propose a novel deep Local-Global Long Short-Term Memory (LG-LSTM) architecture to seamlessly incorporate short-distance and long-distance spatial dependencies into the feature learning over all pixel positions. In each LG-LSTM layer, local guidance from neighboring positions and global guidance from the whole image are imposed on each position to better exploit complex local and global contextual information. Individual LSTMs for distinct spatial dimensions are also utilized to intrinsically capture various spatial layouts of semantic parts in the images, yielding distinct hidden and memory cells of each position for each dimension. In our parsing approach, several LG-LSTM layers are stacked and appended to the intermediate convolutional layers to directly enhance visual features, allowing network parameters to be learned in an end-to-end way. The long chains of sequential computation by stacked LG-LSTM layers also enable each pixel to sense a much larger region for inference benefiting from the memorization of previous dependencies in all positions along all dimensions. Comprehensive evaluations on three public datasets well demonstrate the significant superiority of our LG-LSTM over other state-of-the-art methods.Comment: 10 page
    corecore