2,142 research outputs found

    Single Sample Expression-Anchored Mechanisms Predict Survival in Head and Neck Cancer

    Get PDF
    Gene expression signatures that are predictive of therapeutic response or prognosis are increasingly useful in clinical care; however, mechanistic (and intuitive) interpretation of expression arrays remains an unmet challenge. Additionally, there is surprisingly little gene overlap among distinct clinically validated expression signatures. These “causality challenges” hinder the adoption of signatures as compared to functionally well-characterized single gene biomarkers. To increase the utility of multi-gene signatures in survival studies, we developed a novel approach to generate “personal mechanism signatures” of molecular pathways and functions from gene expression arrays. FAIME, the Functional Analysis of Individual Microarray Expression, computes mechanism scores using rank-weighted gene expression of an individual sample. By comparing head and neck squamous cell carcinoma (HNSCC) samples with non-tumor control tissues, the precision and recall of deregulated FAIME-derived mechanisms of pathways and molecular functions are comparable to those produced by conventional cohort-wide methods (e.g. GSEA). The overlap of “Oncogenic FAIME Features of HNSCC” (statistically significant and differentially regulated FAIME-derived genesets representing GO functions or KEGG pathways derived from HNSCC tissue) among three distinct HNSCC datasets (pathways:46%, p<0.001) is more significant than the gene overlap (genes:4%). These Oncogenic FAIME Features of HNSCC can accurately discriminate tumors from control tissues in two additional HNSCC datasets (n = 35 and 91, F-accuracy = 100% and 97%, empirical p<0.001, area under the receiver operating characteristic curves = 99% and 92%), and stratify recurrence-free survival in patients from two independent studies (p = 0.0018 and p = 0.032, log-rank). Previous approaches depending on group assignment of individual samples before selecting features or learning a classifier are limited by design to discrete-class prediction. In contrast, FAIME calculates mechanism profiles for individual patients without requiring group assignment in validation sets. FAIME is more amenable for clinical deployment since it translates the gene-level measurements of each given sample into pathways and molecular function profiles that can be applied to analyze continuous phenotypes in clinical outcome studies (e.g. survival time, tumor volume)

    Gene Expression Profiling of Bronchoalveolar Lavage Cells Preceding a Clinical Diagnosis of Chronic Lung Allograft Dysfunction.

    Get PDF
    BackgroundChronic Lung Allograft Dysfunction (CLAD) is the main limitation to long-term survival after lung transplantation. Although CLAD is usually not responsive to treatment, earlier identification may improve treatment prospects.MethodsIn a nested case control study, 1-year post transplant surveillance bronchoalveolar lavage (BAL) fluid samples were obtained from incipient CLAD (n = 9) and CLAD free (n = 8) lung transplant recipients. Incipient CLAD cases were diagnosed with CLAD within 2 years, while controls were free from CLAD for at least 4 years following bronchoscopy. Transcription profiles in the BAL cell pellets were assayed with the HG-U133 Plus 2.0 microarray (Affymetrix). Differential gene expression analysis, based on an absolute fold change (incipient CLAD vs no CLAD) &gt;2.0 and an unadjusted p-value ≤0.05, generated a candidate list containing 55 differentially expressed probe sets (51 up-regulated, 4 down-regulated).ResultsThe cell pellets in incipient CLAD cases were skewed toward immune response pathways, dominated by genes related to recruitment, retention, activation and proliferation of cytotoxic lymphocytes (CD8+ T-cells and natural killer cells). Both hierarchical clustering and a supervised machine learning tool were able to correctly categorize most samples (82.3% and 94.1% respectively) into incipient CLAD and CLAD-free categories.ConclusionsThese findings suggest that a pathobiology, similar to AR, precedes a clinical diagnosis of CLAD. A larger prospective investigation of the BAL cell pellet transcriptome as a biomarker for CLAD risk stratification is warranted

    Alteration of Gene Expression Signatures of Cortical Differentiation and Wound Response in Lethal Clear Cell Renal Cell Carcinomas

    Get PDF
    Clear cell renal cell carcinoma (ccRCC) is the most common malignancy of the adult kidney and displays heterogeneity in clinical outcomes. Through comprehensive gene expression profiling, we have identified previously a set of transcripts that predict survival following nephrectomy independent of tumor stage, grade, and performance status. These transcripts, designated as the SPC (supervised principal components) gene set, show no apparent biological or genetic features that provide insight into renal carcinogenesis or tumor progression. We explored the relationship of this gene list to a set of genes expressed in different anatomical segments of the normal kidney including the cortex (cortex gene set) and the glomerulus (glomerulus gene set), and a gene set expressed after serum stimulation of quiescent fibroblasts (the core serum response or CSR gene set). Interestingly, the normal cortex, glomerulus (part of the normal renal cortex), and CSR gene sets captured more than 1/5 of the genes in the highly prognostic SPC gene set. Based on gene expression patterns alone, the SPC gene set could be used to sort samples from normal adult kidneys by the anatomical regions from which they were dissected. Tumors whose gene expression profiles most resembled the normal renal cortex or glomerulus showed better survival than those that did not, and those with expression features more similar to CSR showed poorer survival. While the cortex, glomerulus, and CSR signatures predicted survival independent of traditional clinical parameters, they were not independent of the SPC gene list. Our findings suggest that critical biological features of lethal ccRCC include loss of normal cortical differentiation and activation of programs associated with wound healing

    Genome-wide gene expression profiling of stress response in a spinal cord clip compression injury model.

    Get PDF
    BackgroundThe aneurysm clip impact-compression model of spinal cord injury (SCI) is a standard injury model in animals that closely mimics the primary mechanism of most human injuries: acute impact and persisting compression. Its histo-pathological and behavioural outcomes are extensively similar to human SCI. To understand the distinct molecular events underlying this injury model we analyzed global mRNA abundance changes during the acute, subacute and chronic stages of a moderate to severe injury to the rat spinal cord.ResultsTime-series expression analyses resulted in clustering of the majority of deregulated transcripts into eight statistically significant expression profiles. Systematic application of Gene Ontology (GO) enrichment pathway analysis allowed inference of biological processes participating in SCI pathology. Temporal analysis identified events specific to and common between acute, subacute and chronic time-points. Processes common to all phases of injury include blood coagulation, cellular extravasation, leukocyte cell-cell adhesion, the integrin-mediated signaling pathway, cytokine production and secretion, neutrophil chemotaxis, phagocytosis, response to hypoxia and reactive oxygen species, angiogenesis, apoptosis, inflammatory processes and ossification. Importantly, various elements of adaptive and induced innate immune responses span, not only the acute and subacute phases, but also persist throughout the chronic phase of SCI. Induced innate responses, such as Toll-like receptor signaling, are more active during the acute phase but persist throughout the chronic phase. However, adaptive immune response processes such as B and T cell activation, proliferation, and migration, T cell differentiation, B and T cell receptor-mediated signaling, and B cell- and immunoglobulin-mediated immune response become more significant during the chronic phase.ConclusionsThis analysis showed that, surprisingly, the diverse series of molecular events that occur in the acute and subacute stages persist into the chronic stage of SCI. The strong agreement between our results and previous findings suggest that our analytical approach will be useful in revealing other biological processes and genes contributing to SCI pathology

    Gene Expression Profiling Predicts Survival in Conventional Renal Cell Carcinoma

    Get PDF
    BACKGROUND: Conventional renal cell carcinoma (cRCC) accounts for most of the deaths due to kidney cancer. Tumor stage, grade, and patient performance status are used currently to predict survival after surgery. Our goal was to identify gene expression features, using comprehensive gene expression profiling, that correlate with survival. METHODS AND FINDINGS: Gene expression profiles were determined in 177 primary cRCCs using DNA microarrays. Unsupervised hierarchical clustering analysis segregated cRCC into five gene expression subgroups. Expression subgroup was correlated with survival in long-term follow-up and was independent of grade, stage, and performance status. The tumors were then divided evenly into training and test sets that were balanced for grade, stage, performance status, and length of follow-up. A semisupervised learning algorithm (supervised principal components analysis) was applied to identify transcripts whose expression was associated with survival in the training set, and the performance of this gene expression-based survival predictor was assessed using the test set. With this method, we identified 259 genes that accurately predicted disease-specific survival among patients in the independent validation group (p < 0.001). In multivariate analysis, the gene expression predictor was a strong predictor of survival independent of tumor stage, grade, and performance status (p < 0.001). CONCLUSIONS: cRCC displays molecular heterogeneity and can be separated into gene expression subgroups that correlate with survival after surgery. We have identified a set of 259 genes that predict survival after surgery independent of clinical prognostic factors

    Statistical analysis of high-dimensional biomedical data: a gentle introduction to analytical goals, common approaches and challenges

    Get PDF
    International audienceBackground: In high-dimensional data (HDD) settings, the number of variables associated with each observation is very large. Prominent examples of HDD in biomedical research include omics data with a large number of variables such as many measurements across the genome, proteome, or metabolome, as well as electronic health records data that have large numbers of variables recorded for each patient. The statistical analysis of such data requires knowledge and experience, sometimes of complex methods adapted to the respective research questions. Methods: Advances in statistical methodology and machine learning methods offer new opportunities for innovative analyses of HDD, but at the same time require a deeper understanding of some fundamental statistical concepts. Topic group TG9 “High-dimensional data” of the STRATOS (STRengthening Analytical Thinking for Observational Studies) initiative provides guidance for the analysis of observational studies, addressing particular statistical challenges and opportunities for the analysis of studies involving HDD. In this overview, we discuss key aspects of HDD analysis to provide a gentle introduction for non-statisticians and for classically trained statisticians with little experience specific to HDD. Results: The paper is organized with respect to subtopics that are most relevant for the analysis of HDD, in particular initial data analysis, exploratory data analysis, multiple testing, and prediction. For each subtopic, main analytical goals in HDD settings are outlined. For each of these goals, basic explanations for some commonly used analysis methods are provided. Situations are identified where traditional statistical methods cannot, or should not, be used in the HDD setting, or where adequate analytic tools are still lacking. Many key references are provided. Conclusions: This review aims to provide a solid statistical foundation for researchers, including statisticians and non-statisticians, who are new to research with HDD or simply want to better evaluate and understand the results of HDD analyses

    Meta-analysis for pathway enrichment analysis and biomarker detection when combining multiple genomic studies

    Get PDF
    This thesis focuses on applying meta-analysis methods for combining genomic studies on biomarker detection and pathway enrichment analysis. DNA microarray technology has been maturely developed in the past decade and led to an explosion on publicly available microarray data sets. However, the noisy nature of DNA microarray technology results in low reproducibility across microarray studies. Therefore, it is of interest to apply meta-analysis to microarray data to increase the reliability and robustness of results from individual studies. Currently most meta-analysis methods for combining genomic studies focus on biomarker detection, and meta-analysis for pathway analysis has not been systematically pursued. We investigated two natural approaches of meta-analysis for pathway enrichment (MAPE) by combining statistical significance across studies at the gene level (MAPE_G) or at the pathway level (MAPE_P). Simulation results showed increased statistical power of both approaches and their complementary advantages under different scenarios. We also developed an integrated method (MAPE_I) that incorporates advantages of both approaches. Applications to real data on drug response of a breast cancer cell line, lung and prostate cancer tissues were evaluated to compare the performance of the different methods. MAPE_P has the general advantage of not requiring gene matching across studies. When MAPE_G and MAPE_P show complementary advantages, the integrated version MAPE_I is recommended. A software package named MetaPath, was implemented to perform the MAPE analysis. In addition to developing MAPE methods, we also applied meta-analysis approach to chemotherapy research to discover robust biomarkers and multi-drug response genes, which have prognostic value and the potential of identifying new therapeutic targets

    A functional genomic model for predicting prognosis in idiopathic pulmonary fibrosis

    Get PDF
    Background: The course of disease for patients with idiopathic pulmonary fibrosis (IPF) is highly heterogeneous. Prognostic models rely on demographic and clinical characteristics and are not reproducible. Integrating data from genomic analyses may identify novel prognostic models and provide mechanistic insights into IPF. Methods: Total RNA of peripheral blood mononuclear cells was subjected to microarray profiling in a training (45 IPF individuals) and two independent validation cohorts (21 IPF/10 controls, and 75 IPF individuals, respectively). To identify a gene set predictive of IPF prognosis, we incorporated genomic, clinical, and outcome data from the training cohort. Predictor genes were selected if all the following criteria were met: 1) Present in a gene co-expression module from Weighted Gene Co-expression Network Analysis (WGCNA) that correlated with pulmonary function (p 1.5 and false discovery rate (FDR) < 2 %; and 3) Predictive of mortality (p < 0.05) in univariate Cox regression analysis. "Survival risk group prediction" was adopted to construct a functional genomic model that used the IPF prognostic predictor gene set to derive a prognostic index (PI) for each patient into either high or low risk for survival outcomes. Prediction accuracy was assessed with a repeated 10-fold cross-validation algorithm and independently assessed in two validation cohorts through multivariate Cox regression survival analysis. Results: A set of 118 IPF prognostic predictor genes was used to derive the functional genomic model and PI. In the training cohort, high-risk IPF patients predicted by PI had significantly shorter survival compared to those labeled as low-risk patients (log rank p < 0.001). The prediction accuracy was further validated in two independent cohorts (log rank p < 0.001 and 0.002). Functional pathway analysis revealed that the canonical pathways enriched with the IPF prognostic predictor gene set were involved in T-cell biology, including iCOS, T-cell receptor, and CD28 signaling. Conclusions: Using supervised and unsupervised analyses, we identified a set of IPF prognostic predictor genes and derived a functional genomic model that predicted high and low-risk IPF patients with high accuracy. This genomic model may complement current prognostic tools to deliver more personalized care for IPF patients

    Incorporating biological information into linear models: A Bayesian approach to the selection of pathways and genes

    Full text link
    The vast amount of biological knowledge accumulated over the years has allowed researchers to identify various biochemical interactions and define different families of pathways. There is an increased interest in identifying pathways and pathway elements involved in particular biological processes. Drug discovery efforts, for example, are focused on identifying biomarkers as well as pathways related to a disease. We propose a Bayesian model that addresses this question by incorporating information on pathways and gene networks in the analysis of DNA microarray data. Such information is used to define pathway summaries, specify prior distributions, and structure the MCMC moves to fit the model. We illustrate the method with an application to gene expression data with censored survival outcomes. In addition to identifying markers that would have been missed otherwise and improving prediction accuracy, the integration of existing biological knowledge into the analysis provides a better understanding of underlying molecular processes.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS463 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore