18,349 research outputs found

    Supervised learning of short and high-dimensional temporal sequences for life science measurements

    Full text link
    The analysis of physiological processes over time are often given by spectrometric or gene expression profiles over time with only few time points but a large number of measured variables. The analysis of such temporal sequences is challenging and only few methods have been proposed. The information can be encoded time independent, by means of classical expression differences for a single time point or in expression profiles over time. Available methods are limited to unsupervised and semi-supervised settings. The predictive variables can be identified only by means of wrapper or post-processing techniques. This is complicated due to the small number of samples for such studies. Here, we present a supervised learning approach, termed Supervised Topographic Mapping Through Time (SGTM-TT). It learns a supervised mapping of the temporal sequences onto a low dimensional grid. We utilize a hidden markov model (HMM) to account for the time domain and relevance learning to identify the relevant feature dimensions most predictive over time. The learned mapping can be used to visualize the temporal sequences and to predict the class of a new sequence. The relevance learning permits the identification of discriminating masses or gen expressions and prunes dimensions which are unnecessary for the classification task or encode mainly noise. In this way we obtain a very efficient learning system for temporal sequences. The results indicate that using simultaneous supervised learning and metric adaptation significantly improves the prediction accuracy for synthetically and real life data in comparison to the standard techniques. The discriminating features, identified by relevance learning, compare favorably with the results of alternative methods. Our method permits the visualization of the data on a low dimensional grid, highlighting the observed temporal structure

    Deep learning cardiac motion analysis for human survival prediction

    Get PDF
    Motion analysis is used in computer vision to understand the behaviour of moving objects in sequences of images. Optimising the interpretation of dynamic biological systems requires accurate and precise motion tracking as well as efficient representations of high-dimensional motion trajectories so that these can be used for prediction tasks. Here we use image sequences of the heart, acquired using cardiac magnetic resonance imaging, to create time-resolved three-dimensional segmentations using a fully convolutional network trained on anatomical shape priors. This dense motion model formed the input to a supervised denoising autoencoder (4Dsurvival), which is a hybrid network consisting of an autoencoder that learns a task-specific latent code representation trained on observed outcome data, yielding a latent representation optimised for survival prediction. To handle right-censored survival outcomes, our network used a Cox partial likelihood loss function. In a study of 302 patients the predictive accuracy (quantified by Harrell's C-index) was significantly higher (p < .0001) for our model C=0.73 (95%\% CI: 0.68 - 0.78) than the human benchmark of C=0.59 (95%\% CI: 0.53 - 0.65). This work demonstrates how a complex computer vision task using high-dimensional medical image data can efficiently predict human survival

    Multi-Sensor Event Detection using Shape Histograms

    Full text link
    Vehicular sensor data consists of multiple time-series arising from a number of sensors. Using such multi-sensor data we would like to detect occurrences of specific events that vehicles encounter, e.g., corresponding to particular maneuvers that a vehicle makes or conditions that it encounters. Events are characterized by similar waveform patterns re-appearing within one or more sensors. Further such patterns can be of variable duration. In this work, we propose a method for detecting such events in time-series data using a novel feature descriptor motivated by similar ideas in image processing. We define the shape histogram: a constant dimension descriptor that nevertheless captures patterns of variable duration. We demonstrate the efficacy of using shape histograms as features to detect events in an SVM-based, multi-sensor, supervised learning scenario, i.e., multiple time-series are used to detect an event. We present results on real-life vehicular sensor data and show that our technique performs better than available pattern detection implementations on our data, and that it can also be used to combine features from multiple sensors resulting in better accuracy than using any single sensor. Since previous work on pattern detection in time-series has been in the single series context, we also present results using our technique on multiple standard time-series datasets and show that it is the most versatile in terms of how it ranks compared to other published results
    • …
    corecore