2,848 research outputs found

    Towards personalized medicine for metastatic urothelial cancer

    Get PDF

    Towards personalized medicine for metastatic urothelial cancer

    Get PDF

    Metabolic pathways and therapeutic opportunities in the chronic lymphocytic leukemia microenvironment

    Get PDF
    This study delves into the intricate metabolic dynamics of chronic lymphocytic leukaemia (CLL) within the tumour microenvironment (TME) of lymphoid tissues. Unlike the traditional focus on quiescent CLL cells in peripheral blood, this study aims to unravel complex metabolic behaviour of CLL cells in the lymph node compartment, where CLL cells divide and become activated.Utilizing state-of-the-art methods, such as metabolomics, transcriptomics, and fluxomics, we found that interaction of CLL cells with adjacent cells within the TME results in significant metabolic alterations. Particularly, we discovered a shift towards glutamine dependency of CLL cells upon TME-related stimulation. Such metabolic alterations impact sensitivity of these leukaemia cells to treatments, especially to specific apoptosis inducing agents, such as venetoclax, which has become the cornerstone of CLL treatment. The study demonstrates that by targeting specific metabolic pathways, such as the electron transport chain, CLL cells can be sensitized to venetoclax treatment. This finding can be exploited for the development of innovative strategies in order to overcome drug resistance.Additionally, the thesis explores the effects of mitochondrial glutamine transporters and the broader implications of lipid metabolism alterations in CLL. It also probes into the role of key genetic factors, such as p53, in the metabolic regulation of CLL and other B cell malignancies, unveiling new insights into potential therapeutic vulnerabilities.Conclusively, this research not only fills critical gaps in our understanding of CLL metabolism within the TME but also paves the way for novel, targeted therapeutic interventions. By linking metabolic alterations to treatment responses, it sets the stage for more effective, personalized approaches in the management of CLL

    Analysis and monitoring of single HaCaT cells using volumetric Raman mapping and machine learning

    Get PDF
    No explorer reached a pole without a map, no chef served a meal without tasting, and no surgeon implants untested devices. Higher accuracy maps, more sensitive taste buds, and more rigorous tests increase confidence in positive outcomes. Biomedical manufacturing necessitates rigour, whether developing drugs or creating bioengineered tissues [1]–[4]. By designing a dynamic environment that supports mammalian cells during experiments within a Raman spectroscope, this project provides a platform that more closely replicates in vivo conditions. The platform also adds the opportunity to automate the adaptation of the cell culture environment, alongside spectral monitoring of cells with machine learning and three-dimensional Raman mapping, called volumetric Raman mapping (VRM). Previous research highlighted key areas for refinement, like a structured approach for shading Raman maps [5], [6], and the collection of VRM [7]. Refining VRM shading and collection was the initial focus, k-means directed shading for vibrational spectroscopy map shading was developed in Chapter 3 and exploration of depth distortion and VRM calibration (Chapter 4). “Cage” scaffolds, designed using the findings from Chapter 4 were then utilised to influence cell behaviour by varying the number of cage beams to change the scaffold porosity. Altering the porosity facilitated spectroscopy investigation into previously observed changes in cell biology alteration in response to porous scaffolds [8]. VRM visualised changed single human keratinocyte (HaCaT) cell morphology, providing a complementary technique for machine learning classification. Increased technical rigour justified progression onto in-situ flow chamber for Raman spectroscopy development in Chapter 6, using a Psoriasis (dithranol-HaCaT) model on unfixed cells. K-means-directed shading and principal component analysis (PCA) revealed HaCaT cell adaptations aligning with previous publications [5] and earlier thesis sections. The k-means-directed Raman maps and PCA score plots verified the drug-supplying capacity of the flow chamber, justifying future investigation into VRM and machine learning for monitoring single cells within the flow chamber

    Effects of municipal smoke-free ordinances on secondhand smoke exposure in the Republic of Korea

    Get PDF
    ObjectiveTo reduce premature deaths due to secondhand smoke (SHS) exposure among non-smokers, the Republic of Korea (ROK) adopted changes to the National Health Promotion Act, which allowed local governments to enact municipal ordinances to strengthen their authority to designate smoke-free areas and levy penalty fines. In this study, we examined national trends in SHS exposure after the introduction of these municipal ordinances at the city level in 2010.MethodsWe used interrupted time series analysis to assess whether the trends of SHS exposure in the workplace and at home, and the primary cigarette smoking rate changed following the policy adjustment in the national legislation in ROK. Population-standardized data for selected variables were retrieved from a nationally representative survey dataset and used to study the policy action’s effectiveness.ResultsFollowing the change in the legislation, SHS exposure in the workplace reversed course from an increasing (18% per year) trend prior to the introduction of these smoke-free ordinances to a decreasing (−10% per year) trend after adoption and enforcement of these laws (ÎČ2 = 0.18, p-value = 0.07; ÎČ3 = −0.10, p-value = 0.02). SHS exposure at home (ÎČ2 = 0.10, p-value = 0.09; ÎČ3 = −0.03, p-value = 0.14) and the primary cigarette smoking rate (ÎČ2 = 0.03, p-value = 0.10; ÎČ3 = 0.008, p-value = 0.15) showed no significant changes in the sampled period. Although analyses stratified by sex showed that the allowance of municipal ordinances resulted in reduced SHS exposure in the workplace for both males and females, they did not affect the primary cigarette smoking rate as much, especially among females.ConclusionStrengthening the role of local governments by giving them the authority to enact and enforce penalties on SHS exposure violation helped ROK to reduce SHS exposure in the workplace. However, smoking behaviors and related activities seemed to shift to less restrictive areas such as on the streets and in apartment hallways, negating some of the effects due to these ordinances. Future studies should investigate how smoke-free policies beyond public places can further reduce the SHS exposure in ROK

    An exPADItion for citrullination in the developing hair follicle

    Get PDF
    During epidermal development, to assure proper tissue structure, highly complex transcriptional networks interact within the stem cell compartments of the epidermis and hair follicles (HFs) to balance the choice between self-renewal or differentiation. The full characterisation of the protein profiles resulting from those transcriptional networks, within the compartments of the HF, remains, however, incomplete. Moreover, the proteins themselves can be regulated via posttranslational modification (PTMs). One such PTM is citrullination, carried out by the peptidylarginine deiminase (PADI) family of enzymes. Although, PADIs have been described in other stem and progenitor cells, their role in hair follicle stem cell (HFSC) and progenitor lineages have remained elusive. The main objectives of this thesis are to address the functional consequences of PADI expression in HFSCs during development. Paper I identifies Padi4 expression in the developing HF, where it is found to participate in restricting proliferation and lineage commitment of HF progenitors, as well as playing a role in the central mechanism for translational control, and by doing so altering the distinct sequential events that mark HF differentiation progression. As a result, we identify citrullination as a means to assert regulation of protein function in HFSCs and progenitors. Paper II identifies alternative isoforms of PADI2 and PADI3, in oligodendrocytes and HF differentiated cells, respectively, and show that the alternative isoforms have an incumbering effect on the enzymatic activity and stability of their conventional counterparts. Paper III is a review paper in which meta-analysis of published human citrullinomes in health and inflammatory disease reveals that citrullination is a commonplace yet highly dynamic molecular regulator of protein function. A strong case is made for the involvement of PADIs and citrullination in hair follicle stem cell biology and inflammatory alopecia. Paper IV addresses the involvement of transcription factor ID1 in self-renewal and differentiation of epidermal progenitor cells during development. This study describes how ID1 facilitates synchronisation of progenitor proliferation and differentiation via TCF3- binding, and establishes a novel axis of coordination for how BMP-induction of Id1 expression via pSMAD1/5 is supressed by CEBPa. The combined efforts within this thesis demonstrate the clear and overarching importance of PADIs and citrullination in skin developmental physiology

    30th European Congress on Obesity (ECO 2023)

    Get PDF
    This is the abstract book of 30th European Congress on Obesity (ECO 2023

    Rational development of stabilized cyclic disulfide redox probes and bioreductive prodrugs to target dithiol oxidoreductases

    Get PDF
    Countless biological processes allow cells to develop, survive, and proliferate. Among these, tightly balanced regulatory enzymatic pathways that can respond rapidly to external impacts maintain dynamic physiological homeostasis. More specifically, redox homeostasis broadly affects cellular metabolism and proliferation, with major contributions by thiol/disulfide oxidoreductase systems, in particular, the Thioredoxin Reductase Thioredoxin (TrxR/Trx) and the Glutathione Reductase-Glutathione-Glutaredoxin (GR/GSH/Grx) systems. These cascades drive vital cellular functions in many ways through signaling, regulating other proteins' activity by redox switches, and by stoichiometric reductant transfers in metabolism and antioxidant systems. Increasing evidence argues that there is a persistent alteration of the redox environment in certain pathological states, such as cancer, that heavily involve the Trx system: upregulation and/or overactivity of the Trx system may support or drive cancer progression, making both TrxR and Trx promising targets for anti-cancer drug development. Understanding the biochemical mechanisms and connections between certain redox cascades requires research tools that interact with them. The state-of-the-art genetic tools are mostly ratiometric reporters that measure reduced:oxidized ratios of selected redox pairs or the general thiol pool. However, the precise cellular roles of the central oxidoreductase systems, including TrxR and Trx, remain inaccessible due to the lack of probes to selectively measure turnover by either of these proteins. However, such probes would allow measuring their effective reductive activity apart from expression levels in native systems, including in cells, animals, or patient samples. They are also of high interest to identify chemical inhibitors for TrxR/Trx in cells and to validate their potential use as anti-cancer agents (to date, there is no selective cellular Trx inhibitor, and most known TrxR inhibitors were not comprehensively evaluated considering selectivity and potential off-targets). However, small molecule redox imaging tools are underdeveloped: their protein specificity, spectral properties, and applicability remain poorly precedented. This work aimed to address this opportunity gap and develop novel, small molecule diagnostic and therapeutic tools to selectively target the Trx system based on a modular trigger cargo design: artificial cyclic disulfide substrates (trigger) for oxidoreductases are tethered to molecular agents (cargo) such that the cargo’s activity is masked and is re-established only through reduction by a target protein. The rational design of these novel reduction sensors to target the cell's strongest disulfide-reducing enzymes was driven by the following principles: (i) cyclic disulfide triggers with stabilized ring systems were used to gain low reduction potentials that should resist reduction except by the strongest cellular reductases, such as Trx; and (ii) the cyclic topology also offers the potential for kinetic reversibility that should select for dithiol-type redox proteins over the cellular monothiol background. Creating imaging agents based on such two-component designs to selectively measure redox protein activity in native cells required to combine the correct trigger reducibility, probe activation kinetics, and imaging modalities and to consider the overall molecular architecture. The major prior art in this field has applied cyclic 5-membered disulfides (1,2 dithiolanes) as substrates for TrxR in a similar way to create such tools. However, this motif was described elsewhere as thermodynamically instable and was due to widely used for dynamic covalent cascade reactions. By comparing a novel 1,2 dithiolane-based probe to the state-of-the-art probes, including commercial TrxR sensors, by screening a conclusive assay panel of cellular TrxR modulations, I clarified that 1,2 dithiolanes are not selective substrates for TrxR in biological settings (Nat Commun 2022). Instead, aiming for more stable ring systems and thus more robust redox probes, during this work, I developed bicyclic 6 membered disulfides (piperidine fused 1,2 dithianes) with remarkably low reduction potentials. I showed that molecular probes using them as reduction sensors can be mostly processed by thioredoxins while being stable against reduction by GSH. The thermodynamically stabilized decalin like topology of the cis-annelated 1,2 dithianes requires particularly strong reductants to be cleaved. They also select for dithiol type redox proteins, like Trx, based on kinetic reversibility and offer fast cyclization due to the preorganization by annelation (JACS 2021). This work further expanded the system’s modularity with structural cores based on piperazine-fused 1,2 dithianes with the two amines allowing independent derivatization. Diagnostic tools using them as reduction sensors proved equally robust but with highly improved activation kinetics and were thus cellularly activated. Cellular studies evolved that they are substrates for both Trxs and their protein cousins Grxs, so measuring the cellular dithiol protein pool rather than solely Trx activity (preprint 2023). Finally, a trigger based on a slightly adapted reduction sensor, a desymmetrized 1,2 thiaselenane, was designed for selective reduction by TrxR’s selenol/thiol active site, then combined with a precipitating large Stokes’ shift fluorophore and a solubilizing group, to evolve the first selective probe RX1 to measure cellular TrxR activity, which even allowed high throughput inhibitor screening (Chem 2022). The central principle of this work was further advanced to therapeutic prodrugs based on the duocarmycin cargo (CBI) with tunable potency (JACS Au 2022) that can be used to create off-to-on therapeutic prodrugs. Such CBI prodrugs employing stabilized 1,2 dichalcogenide triggers proved to be cytotoxins that depend on Trx system activity in cells. They could further be exploited for cell-line dependent reductase activity profiling by screening their redox activation indices, the reduction-dependent part of total prodrug activation, in 177 cell lines. Beyond that, these prodrugs were well-tolerated in animals and showed anti-cancer efficacy in vivo in two distinct mouse tumor models (preprint 2022). Taken together, I introduced unique monothiol-resistant reducible motifs to target the cellular Trx system with chemocompatible units for each for TrxR and Trx/Grx, where the cyclic nature of the dichalcogenides avoids activation by GSH. By using them with distinct molecular cargos, I developed novel selective fluorescent reporter probes; and introduced a new class of bioreductive therapeutic constructs based on a common modular design. These were either applied to selectively measure cellular reductase activity or to deliver cytotoxic anti cancer agents in vivo. Ongoing work aims to differentiate between the two major redox effector proteins Trx and Grx, requiring additional layers of selectivity that may be addressed by tuned molecular recognition. The flexible use of various molecular cargos allows harnessing the same cellular redox machinery by either probes or prodrugs. This allows predictive conclusions from diagnostics to be directly translated into therapy and offers great potential for future adaptation to other enzyme classes and therapeutic venues.Die zellulĂ€re Redox-Homöostase hĂ€ngt von Thiol/Disulfid-Oxidoreduktasen ab, die den Stoffwechsel, die Proliferation und die antioxidative Antwort von Zellen beeinflussen. Die wichtigsten Netzwerke sind die Thioredoxin Reduktase-Thioredoxin (TrxR/Trx) und Glutathion Reduktase-Glutathion-Glutaredoxin (GR/GSH/Grx) Systeme, die ĂŒber Redox-Schalter in Substratproteinen lebenswichtige zellulĂ€re Funktionen steuern und so an der Redox-Regulation und -SignalĂŒbertragung beteiligt sind. Persistente VerĂ€nderungen des Redoxmilieus in pathologischen ZustĂ€nden, wie z. B. bei Krebs, sind in hohem Maße mit dem Trx-System verbunden. Eine Hochregulierung und/oder ÜberaktivitĂ€t des Trx-Systems, die bei vielen Krebsarten auftreten, unterstĂŒtzt zudem das Fortschreiten des Krebswachstums, was TrxR/Trx zu vielversprechenden Zielproteinen fĂŒr die Entwicklung neuer Krebsmedikamente macht. Um die biochemischen Prozesse dahinter zu erforschen, sind spezielle Techniken zur Visualisierung und Messung enzymatischer AktivitĂ€t nötig. Die hierzu geeigneten, meist genetischen Sensoren messen ratiometrisch das VerhĂ€ltnis reduzierter/oxidierter Spezies in zellulĂ€rem Umfeld oder spezifisch ausgewĂ€hlte Redoxpaare. Die weitere Erforschung der exakten Funktion von TrxR/Trx und deren Substrate ist jedoch durch mangelnde Nachweismethoden limitiert. Diese sind außerdem zur Validierung chemischer Hemmstoffe fĂŒr TrxR/Trx in Zellen und deren potenziellen Verwendung als Krebsmittel von großem Interesse. Bislang gibt es keinen selektiven zellulĂ€ren Trx-Inhibitor und potenzielle Off-Target-Effekte der bekannten TrxR-Inhibitoren wurden nicht abschließend bewertet. Ziel dieser Arbeit ist die Entwicklung niedermolekularer, diagnostischer und therapeutischer Werkzeuge, die selektiv auf das Trx-System abzielen und auf einem modularen Trigger-Cargo Design basieren. Hierzu werden zyklische Disulfid-Substrate (Trigger) fĂŒr Oxidoreduktasen so mit molekularen Wirkstoffen (Cargo) verknĂŒpft, dass dabei die WirkstoffaktivitĂ€t maskiert, und erst nach Reduktion durch ein Zielprotein wiederhergestellt wird. Diese neuartigen, synthetischen Reduktionssensoren basieren auf den folgenden Grundprinzipien: (i) Zyklische Disulfide sind thermodynamisch stabilisiert und können nur durch die stĂ€rksten Reduktasen gespalten werden; und (ii) die zyklische Topologie ermöglicht die kinetische ReversibilitĂ€t der zwei Thiol-Disulfid-Austauschreaktionen, die eine erste Reaktion mit Monothiolen, wie z. B. GSH, sofort umkehrt und so eine vollstĂ€ndige Reduktion verhindert. Die meisten frĂŒheren Arbeiten auf diesem Gebiet verwendeten ein zyklisches, fĂŒnfgliedriges Disulfid (1,2 Dithiolan) als Substrat fĂŒr TrxR. Das gleiche Strukturmotiv wurde jedoch an anderer Stelle als thermodynamisch instabil beschrieben und aufgrund dieser Eigenschaft explizit fĂŒr dynamische Kaskadenreaktionen verwendet. Deshalb vergleicht diese Arbeit zu Beginn einen neuen 1,2 Dithiolan basierten fluorogenen Indikator mit bestehenden, z. T. kommerziellen, Redox Sonden fĂŒr TrxR in einer Reihe von Zellkultur-Experimenten unter Modulation der zellulĂ€ren TrxR AktivitĂ€t und stellt so einen Widerspruch in der Literatur klar: 1,2 Dithiolane eignen sich nicht als selektive Substrate fĂŒr TrxR, da sie labil sowohl gegen die Reduktion durch andere Redoxproteine, als auch gegen den Monothiol Hintergrund in Zellen sind (Nat. Commun. 2022). Als alternatives Strukturmotiv wird in dieser Arbeit ein bizyklisches sechsgliedriges Disulfid (anneliertes 1,2 Dithian) etabliert. Durch sein niedriges Reduktionspotenzial, also seine hohe Resistenz gegen Reduktion, werden molekulare Sonden basierend auf diesem 1,2 Dithian als Reduktionssensor fast ausschließlich von Trx aktiviert, nicht aber von TrxR oder GSH (JACS 2021). Dieses Kernmotiv bestimmt dabei die Reduzierbarkeit, und damit die EnzymspezifitĂ€t, durch seine zyklische Natur und die Annelierung, auch unter Verwendung unterschiedlicher Farb-/Wirkstoffe. Auf dieser Grundlage konnte die molekulare Struktur durch einen weiteren Modifikationspunkt fĂŒr die flexible Verwendung weiterer funktioneller Einheiten ergĂ€nzt werden. Obwohl zellulĂ€re Studien ergaben, dass diese neuartigen 1,2 Dithian Einheiten in Zellen sowohl Trx als auch das strukturell verwandte Grx adressieren, sind die daraus resultierenden diagnostischen MolekĂŒle wertvoll, um den katalytischen Umsatz zellulĂ€rer Dithiol-Reduktasen, der sogenannten Trx Superfamilie, selektiv anzuzeigen (Preprint 2023). BegĂŒnstigt durch das modulare MolekĂŒldesign stellt diese Arbeit zudem das erste Reportersystem RX1 zum selektiven Nachweis der TrxR-AktivitĂ€t in Zellen vor. Es basiert auf der Verwendung eines zyklischen, unsymmetrischen Selenenylsulfid-Sensors (1,2 Thiaselenan), der selektiv von dem einzigartigen Selenolat der TrxR angegriffen wird, und dadurch letztlich nur von TrxR reduziert werden kann. RX1 eignete sich zudem fĂŒr eine Hochdurchsatz-Validierung bestehender TrxR Inhibitoren und unterstreicht dadurch den kommerziellen Nutzen derartiger Diagnostika (Chem 2022). Das zentrale Trigger-Cargo Konzept dieser Arbeit wurde fĂŒr therapeutische Zwecke weiterentwickelt und nutzt dabei den einzigartigen Wirkmechanismus der Duocarmycin-Naturstoffklasse (CBI) (JACS Au 2022) zur Entwicklung reduktiv aktivierbarer Therapeutika. CBI Prodrugs basierend auf stabilisierten Redox-Schaltern (1,2 Dithiane fĂŒr Trx; 1,2 Thiaselenan fĂŒr TrxR) reagierten signifikant auf TrxR-Modulation in Zellen. Sie wurden darĂŒber hinaus durch das Referenzieren ihrer AktivitĂ€t gegenĂŒber nicht-reduzierbaren KontrollmolekĂŒle fĂŒr die Erstellung zelllinienabhĂ€ngiger Profile der ReduktaseaktivitĂ€t in 177 Zelllinien genutzt. Schließlich waren diese neuen Krebsmittel im Tiermodell gut vertrĂ€glich und zeigten in zwei verschiedenen Mausmodellen eine krebshemmende Wirkung (Preprint 2022b). Zusammenfassend prĂ€sentiert diese Dissertation monothiol-resistente reduzierbare Trigger-Einheiten fĂŒr das zellulĂ€re Trx-System zur Entwicklung neuartiger, selektiver Reporter-Sonden, sowie eine neue Klasse reduktiv aktivierbarer Krebsmittel auf Basis eines adaptierbaren Trigger-Cargo Designs. Diese fanden entweder zur selektiven Messung zellulĂ€rer ProteinaktivitĂ€t oder zum Einsatz als Antikrebsmittel Verwendung. Es wurden chemokompatible Motive sowohl fĂŒr TrxR als auch fĂŒr Trx/Grx identifiziert, wobei deren zyklische Natur eine Aktivierung durch GSH verhindert. Eine weitere Differenzierung zwischen den beiden Redox-Proteinen Trx und Grx und anderen Proteinen der Trx-Superfamilie erfordert eine zusĂ€tzliche Ebene der Selektierung, z. B. durch molekulare Erkennung, und ist Gegenstand laufender Arbeiten. Die flexible Verwendung verschiedener molekularer Wirkstoffe ermöglicht dabei die „Pipeline-Entwicklung“ von Diagnostika und Therapeutika, die von der zellulĂ€ren Redox-Maschinerie analog umgesetzt werden, und dadurch Schlussfolgerungen aus der Diagnostik direkt auf eine Therapie ĂŒbertragbar machen. Dies birgt großes Potenzial fĂŒr kĂŒnftige Entwicklungen bei einer potenziellen Übertragung des modularen Konzepts auf andere Enzymklassen und therapeutische Einsatzgebiete
    • 

    corecore