324 research outputs found

    Taming Wild High Dimensional Text Data with a Fuzzy Lash

    Full text link
    The bag of words (BOW) represents a corpus in a matrix whose elements are the frequency of words. However, each row in the matrix is a very high-dimensional sparse vector. Dimension reduction (DR) is a popular method to address sparsity and high-dimensionality issues. Among different strategies to develop DR method, Unsupervised Feature Transformation (UFT) is a popular strategy to map all words on a new basis to represent BOW. The recent increase of text data and its challenges imply that DR area still needs new perspectives. Although a wide range of methods based on the UFT strategy has been developed, the fuzzy approach has not been considered for DR based on this strategy. This research investigates the application of fuzzy clustering as a DR method based on the UFT strategy to collapse BOW matrix to provide a lower-dimensional representation of documents instead of the words in a corpus. The quantitative evaluation shows that fuzzy clustering produces superior performance and features to Principal Components Analysis (PCA) and Singular Value Decomposition (SVD), two popular DR methods based on the UFT strategy

    Radiomic data mining and machine learning on preoperative pituitary adenoma MRI

    Get PDF
    Pituitary adenomas are among the most frequent intracranial tumors, accounting for the majority of sellar/suprasellar masses in adults. MRI is the preferred imaging modality for detecting pituitary adenomas. Radiomics represents the conversion of digital medical images into mineable high-dimensional data. This process is motivated by the concept that biomedical images contain information that reflects underlying pathophysiology and that these relationships can be revealed via quantitative image analyses. The aim of this thesis is to apply machine learning algorithms on parameters obtained by texture analysis on MRI images in order to distinguish functional from non-functional pituitary macroadenomas, to predict their ki-67 proliferation index class, and to predict pituitary macroadenoma surgical consistency prior to an endoscopic endonasal procedure

    Comprehensive Assessment of Fine-Grained Wound Images Using a Patch-Based CNN With Context-Preserving Attention

    Get PDF
    Goal: Chronic wounds affect 6.5 million Americans. Wound assessment via algorithmic analysis of smartphone images has emerged as a viable option for remote assessment. Methods: We comprehensively score wounds based on the clinically-validated Photographic Wound Assessment Tool (PWAT), which comprehensively assesses clinically important ranges of eight wound attributes: Size, Depth, Necrotic Tissue Type, Necrotic Tissue Amount, Granulation Tissue type, Granulation Tissue Amount, Edges, Periulcer Skin Viability. We proposed a DenseNet Convolutional Neural Network (CNN) framework with patch-based context-preserving attention to assess the 8 PWAT attributes of four wound types: diabetic ulcers, pressure ulcers, vascular ulcers and surgical wounds. Results: In an evaluation on our dataset of 1639 wound images, our model estimated all 8 PWAT sub-scores with classification accuracies and F1 scores of over 80%. Conclusions: Our work is the first intelligent system that autonomously grades wounds comprehensively based on criteria in the PWAT rubric, alleviating the significant burden that manual wound grading imposes on wound care nurses
    • …
    corecore