361 research outputs found

    Automatic social role recognition and its application in structuring multiparty interactions

    Get PDF
    Automatic processing of multiparty interactions is a research domain with important applications in content browsing, summarization and information retrieval. In recent years, several works have been devoted to find regular patterns which speakers exhibit in a multiparty interaction also known as social roles. Most of the research in literature has generally focused on recognition of scenario specific formal roles. More recently, role coding schemes based on informal social roles have been proposed in literature, defining roles based on the behavior speakers have in the functioning of a small group interaction. Informal social roles represent a flexible classification scheme that can generalize across different scenarios of multiparty interaction. In this thesis, we focus on automatic recognition of informal social roles and exploit the influence of informal social roles on speaker behavior for structuring multiparty interactions. To model speaker behavior, we systematically explore various verbal and non verbal cues extracted from turn taking patterns, vocal expression and linguistic style. The influence of social roles on the behavior cues exhibited by a speaker is modeled using a discriminative approach based on conditional random fields. Experiments performed on several hours of meeting data reveal that classification using conditional random fields improves the role recognition performance. We demonstrate the effectiveness of our approach by evaluating it on previously unseen scenarios of multiparty interaction. Furthermore, we also consider whether formal roles and informal roles can be automatically predicted by the same verbal and nonverbal features. We exploit the influence of social roles on turn taking patterns to improve speaker diarization under distant microphone condition. Our work extends the Hidden Markov model (HMM)- Gaussian mixture model (GMM) speaker diarization system, and is based on jointly estimating both the speaker segmentation and social roles in an audio recording. We modify the minimum duration constraint in HMM-GMM diarization system by using role information to model the expected duration of speaker's turn. We also use social role n-grams as prior information to model speaker interaction patterns. Finally, we demonstrate the application of social roles for the problem of topic segmentation in meetings. We exploit our findings that social roles can dynamically change in conversations and use this information to predict topic changes in meetings. We also present an unsupervised method for topic segmentation which combines social roles and lexical cohesion. Experimental results show that social roles improve performance of both speaker diarization and topic segmentation

    Meeting decision detection: multimodal information fusion for multi-party dialogue understanding

    Get PDF
    Modern advances in multimedia and storage technologies have led to huge archives of human conversations in widely ranging areas. These archives offer a wealth of information in the organization contexts. However, retrieving and managing information in these archives is a time-consuming and labor-intensive task. Previous research applied keyword and computer vision-based methods to do this. However, spontaneous conversations, complex in the use of multimodal cues and intricate in the interactions between multiple speakers, have posed new challenges to these methods. We need new techniques that can leverage the information hidden in multiple communication modalities – including not just “what” the speakers say but also “how” they express themselves and interact with others. In responding to this need, the thesis inquires into the multimodal nature of meeting dialogues and computational means to retrieve and manage the recorded meeting information. In particular, this thesis develops the Meeting Decision Detector (MDD) to detect and track decisions, one of the most important outcomes of the meetings. The MDD involves not only the generation of extractive summaries pertaining to the decisions (“decision detection”), but also the organization of a continuous stream of meeting speech into locally coherent segments (“discourse segmentation”). This inquiry starts with a corpus analysis which constitutes a comprehensive empirical study of the decision-indicative and segment-signalling cues in the meeting corpora. These cues are uncovered from a variety of communication modalities, including the words spoken, gesture and head movements, pitch and energy level, rate of speech, pauses, and use of subjective terms. While some of the cues match the previous findings of speech segmentation, some others have not been studied before. The analysis also provides empirical grounding for computing features and integrating them into a computational model. To handle the high-dimensional multimodal feature space in the meeting domain, this thesis compares empirically feature discriminability and feature pattern finding criteria. As the different knowledge sources are expected to capture different types of features, the thesis also experiments with methods that can harness synergy between the multiple knowledge sources. The problem formalization and the modeling algorithm so far correspond to an optimal setting: an off-line, post-meeting analysis scenario. However, ultimately the MDD is expected to be operated online – right after a meeting, or when a meeting is still in progress. Thus this thesis also explores techniques that help relax the optimal setting, especially those using only features that can be generated with a higher degree of automation. Empirically motivated experiments are designed to handle the corresponding performance degradation. Finally, with the users in mind, this thesis evaluates the use of query-focused summaries in a decision debriefing task, which is common in the organization context. The decision-focused extracts (which represent compressions of 1%) is compared against the general-purpose extractive summaries (which represent compressions of 10-40%). To examine the effect of model automation on the debriefing task, this evaluation experiments with three versions of decision-focused extracts, each relaxing one manual annotation constraint. Task performance is measured in actual task effectiveness, usergenerated report quality, and user-perceived success. The users’ clicking behaviors are also recorded and analyzed to understand how the users leverage the different versions of extractive summaries to produce abstractive summaries. The analysis framework and computational means developed in this work is expected to be useful for the creation of other dialogue understanding applications, especially those that require to uncover the implicit semantics of meeting dialogues

    Temporal Information in Data Science: An Integrated Framework and its Applications

    Get PDF
    Data science is a well-known buzzword, that is in fact composed of two distinct keywords, i.e., data and science. Data itself is of great importance: each analysis task begins from a set of examples. Based on such a consideration, the present work starts with the analysis of a real case scenario, by considering the development of a data warehouse-based decision support system for an Italian contact center company. Then, relying on the information collected in the developed system, a set of machine learning-based analysis tasks have been developed to answer specific business questions, such as employee work anomaly detection and automatic call classification. Although such initial applications rely on already available algorithms, as we shall see, some clever analysis workflows had also to be developed. Afterwards, continuously driven by real data and real world applications, we turned ourselves to the question of how to handle temporal information within classical decision tree models. Our research brought us the development of J48SS, a decision tree induction algorithm based on Quinlan's C4.5 learner, which is capable of dealing with temporal (e.g., sequential and time series) as well as atemporal (such as numerical and categorical) data during the same execution cycle. The decision tree has been applied into some real world analysis tasks, proving its worthiness. A key characteristic of J48SS is its interpretability, an aspect that we specifically addressed through the study of an evolutionary-based decision tree pruning technique. Next, since a lot of work concerning the management of temporal information has already been done in automated reasoning and formal verification fields, a natural direction in which to proceed was that of investigating how such solutions may be combined with machine learning, following two main tracks. First, we show, through the development of an enriched decision tree capable of encoding temporal information by means of interval temporal logic formulas, how a machine learning algorithm can successfully exploit temporal logic to perform data analysis. Then, we focus on the opposite direction, i.e., that of employing machine learning techniques to generate temporal logic formulas, considering a natural language processing scenario. Finally, as a conclusive development, the architecture of a system is proposed, in which formal methods and machine learning techniques are seamlessly combined to perform anomaly detection and predictive maintenance tasks. Such an integration represents an original, thrilling research direction that may open up new ways of dealing with complex, real-world problems.Data science is a well-known buzzword, that is in fact composed of two distinct keywords, i.e., data and science. Data itself is of great importance: each analysis task begins from a set of examples. Based on such a consideration, the present work starts with the analysis of a real case scenario, by considering the development of a data warehouse-based decision support system for an Italian contact center company. Then, relying on the information collected in the developed system, a set of machine learning-based analysis tasks have been developed to answer specific business questions, such as employee work anomaly detection and automatic call classification. Although such initial applications rely on already available algorithms, as we shall see, some clever analysis workflows had also to be developed. Afterwards, continuously driven by real data and real world applications, we turned ourselves to the question of how to handle temporal information within classical decision tree models. Our research brought us the development of J48SS, a decision tree induction algorithm based on Quinlan's C4.5 learner, which is capable of dealing with temporal (e.g., sequential and time series) as well as atemporal (such as numerical and categorical) data during the same execution cycle. The decision tree has been applied into some real world analysis tasks, proving its worthiness. A key characteristic of J48SS is its interpretability, an aspect that we specifically addressed through the study of an evolutionary-based decision tree pruning technique. Next, since a lot of work concerning the management of temporal information has already been done in automated reasoning and formal verification fields, a natural direction in which to proceed was that of investigating how such solutions may be combined with machine learning, following two main tracks. First, we show, through the development of an enriched decision tree capable of encoding temporal information by means of interval temporal logic formulas, how a machine learning algorithm can successfully exploit temporal logic to perform data analysis. Then, we focus on the opposite direction, i.e., that of employing machine learning techniques to generate temporal logic formulas, considering a natural language processing scenario. Finally, as a conclusive development, the architecture of a system is proposed, in which formal methods and machine learning techniques are seamlessly combined to perform anomaly detection and predictive maintenance tasks. Such an integration represents an original, thrilling research direction that may open up new ways of dealing with complex, real-world problems

    Supervision distante pour l'apprentissage de structures discursives dans les conversations multi-locuteurs

    Get PDF
    L'objectif principal de cette thèse est d'améliorer l'inférence automatique pour la modélisation et la compréhension des communications humaines. En particulier, le but est de faciliter considérablement l'analyse du discours afin d'implémenter, au niveau industriel, des outils d'aide à l'exploration des conversations. Il s'agit notamment de la production de résumés automatiques, de recommandations, de la détection des actes de dialogue, de l'identification des décisions, de la planification et des relations sémantiques entre les actes de dialogue afin de comprendre les dialogues. Dans les conversations à plusieurs locuteurs, il est important de comprendre non seulement le sens de l'énoncé d'un locuteur et à qui il s'adresse, mais aussi les relations sémantiques qui le lient aux autres énoncés de la conversation et qui donnent lieu à différents fils de discussion. Une réponse doit être reconnue comme une réponse à une question particulière ; un argument, comme un argument pour ou contre une proposition en cours de discussion ; un désaccord, comme l'expression d'un point de vue contrasté par rapport à une autre idée déjà exprimée. Malheureusement, les données de discours annotées à la main et de qualités sont coûteuses et prennent du temps, et nous sommes loin d'en avoir assez pour entraîner des modèles d'apprentissage automatique traditionnels, et encore moins des modèles d'apprentissage profond. Il est donc nécessaire de trouver un moyen plus efficace d'annoter en structures discursives de grands corpus de conversations multi-locuteurs, tels que les transcriptions de réunions ou les chats. Un autre problème est qu'aucune quantité de données ne sera suffisante pour permettre aux modèles d'apprentissage automatique d'apprendre les caractéristiques sémantiques des relations discursives sans l'aide d'un expert ; les données sont tout simplement trop rares. Les relations de longue distance, dans lesquelles un énoncé est sémantiquement connecté non pas à l'énoncé qui le précède immédiatement, mais à un autre énoncé plus antérieur/tôt dans la conversation, sont particulièrement difficiles et rares, bien que souvent centrales pour la compréhension. Notre objectif dans cette thèse a donc été non seulement de concevoir un modèle qui prédit la structure du discours pour une conversation multipartite sans nécessiter de grandes quantités de données annotées manuellement, mais aussi de développer une approche qui soit transparente et explicable afin qu'elle puisse être modifiée et améliorée par des experts.The main objective of this thesis is to improve the automatic capture of semantic information with the goal of modeling and understanding human communication. We have advanced the state of the art in discourse parsing, in particular in the retrieval of discourse structure from chat, in order to implement, at the industrial level, tools to help explore conversations. These include the production of automatic summaries, recommendations, dialogue acts detection, identification of decisions, planning and semantic relations between dialogue acts in order to understand dialogues. In multi-party conversations it is important to not only understand the meaning of a participant's utterance and to whom it is addressed, but also the semantic relations that tie it to other utterances in the conversation and give rise to different conversation threads. An answer must be recognized as an answer to a particular question; an argument, as an argument for or against a proposal under discussion; a disagreement, as the expression of a point of view contrasted with another idea already expressed. Unfortunately, capturing such information using traditional supervised machine learning methods from quality hand-annotated discourse data is costly and time-consuming, and we do not have nearly enough data to train these machine learning models, much less deep learning models. Another problem is that arguably, no amount of data will be sufficient for machine learning models to learn the semantic characteristics of discourse relations without some expert guidance; the data are simply too sparse. Long distance relations, in which an utterance is semantically connected not to the immediately preceding utterance, but to another utterance from further back in the conversation, are particularly difficult and rare, though often central to comprehension. It is therefore necessary to find a more efficient way to retrieve discourse structures from large corpora of multi-party conversations, such as meeting transcripts or chats. This is one goal this thesis achieves. In addition, we not only wanted to design a model that predicts discourse structure for multi-party conversation without requiring large amounts of hand-annotated data, but also to develop an approach that is transparent and explainable so that it can be modified and improved by experts. The method detailed in this thesis achieves this goal as well
    • …
    corecore