37 research outputs found

    Collaborative analysis of multi-gigapixel imaging data using Cytomine

    Get PDF
    Motivation: Collaborative analysis of massive imaging datasets is essential to enable scientific discoveries. Results: We developed Cytomine to foster active and distributed collaboration of multidisciplinary teams for large-scale image-based studies. It uses web development methodologies and machine learning in order to readily organize, explore, share and analyze (semantically and quantitatively) multi-gigapixel imaging data over the internet. We illustrate how it has been used in several biomedical applications

    Facial Beauty Prediction and Analysis based on Deep Convolutional Neural Network: A Review

    Get PDF
    Abstract: Facial attractiveness or facial beauty prediction (FBP) is a current study that has several potential usages. It is a key difficulty area in the computer vision domain because of the few public databases related to FBP and its experimental trials on the minor-scale database. Moreover, the evaluation of facial beauty is personalized in nature, with people having personalized favor of beauty. Deep learning techniques have displayed a significant ability in terms of analysis and feature representation. The previous studies focussed on scattered portions of facial beauty with fewer comparisons between diverse techniques. Thus, this article reviewed the recent research on computer prediction and analysis of face beauty based on deep convolution neural network DCNN. Furthermore, the provided possible lines of research and challenges in this article can help researchers in advancing the state – of- art in future work

    Applicability of deep learning for mandibular growth prediction

    Full text link
    OBJECTIVES: Cephalometric analysis is a tool used in orthodontics for craniofacial growth assessment. Magnitude and direction of mandibular growth pose challenges that may impede successful orthodontic treatment. Accurate growth prediction enables the practitioner to improve diagnostics and orthodontic treatment planning. Deep learning provides a novel method due to its ability to analyze massive quantities of data. We compared the growth prediction capabilities of a novel deep learning algorithm with an industry-standard method. METHODS: Using OrthoDx™, 17 mandibular landmarks were plotted on selected serial cephalograms of 101 growing subjects, obtained from the Forsyth Moorrees Twin Study. The Deep Learning Algorithm (DLA) was trained for a 2-year prediction with 81 subjects. X/Y coordinates of initial and final landmark positions were inputted into a multilayer perceptron that was trained to improve its growth prediction accuracy over several iterations. These parameters were then used on 20 test subjects and compared to the ground truth landmark locations to compute the accuracy. The 20 subjects’ growth was also predicted using Ricketts’s growth prediction (RGP) in Dolphin Imaging™ 11.9 and compared to the ground truth. Mean Absolute Error (MAE) of Ricketts and DLA were then compared to each other, and human landmark detection error used as a clinical reference mean (CRM). RESULTS: The 2-year mandibular growth prediction MAE was 4.21mm for DLA and 3.28mm for RGP. DLA’s error for skeletal landmarks was 2.11x larger than CRM, while RGP was 1.78x larger. For dental landmarks, DLA was 2.79x, and Ricketts was 1.73x larger than CRM. CONCLUSIONS: DLA is currently not on par with RGP for a 2-year growth prediction. However, an increase in data volume and increased training may improve DLA’s prediction accuracy. Regardless, significant future improvements to all growth prediction methods would more accurately assess growth from lateral cephalograms and improve orthodontic diagnoses and treatment plans

    Application of artificial intelligence in the dental field : A literature review

    Get PDF
    Purpose: The purpose of this study was to comprehensively review the literature regarding the application of artificial intelligence (AI) in the dental field, focusing on the evaluation criteria and architecture types. Study selection: Electronic databases (PubMed, Cochrane Library, Scopus) were searched. Full-text articles describing the clinical application of AI for the detection, diagnosis, and treatment of lesions and the AI method/architecture were included. Results: The primary search presented 422 studies from 1996 to 2019, and 58 studies were finally selected. Regarding the year of publication, the oldest study, which was reported in 1996, focused on “oral and maxillofacial surgery.” Machine-learning architectures were employed in the selected studies, while approximately half of them (29/58) employed neural networks. Regarding the evaluation criteria, eight studies compared the results obtained by AI with the diagnoses formulated by dentists, while several studies compared two or more architectures in terms of performance. The following parameters were employed for evaluating the AI performance: accuracy, sensitivity, specificity, mean absolute error, root mean squared error, and area under the receiver operating characteristic curve. Conclusion: Application of AI in the dental field has progressed; however, the criteria for evaluating the efficacy of AI have not been clarified. It is necessary to obtain better quality data for machine learning to achieve the effective diagnosis of lesions and suitable treatment planning

    Applications of artificial intelligence in dentistry: A comprehensive review

    Get PDF
    This work was funded by the Spanish Ministry of Sciences, Innovation and Universities under Projects RTI2018-101674-B-I00 and PGC2018-101904-A-100, University of Granada project A.TEP. 280.UGR18, I+D+I Junta de Andalucia 2020 project P20-00200, and Fapergs/Capes do Brasil grant 19/25510000928-3. Funding for open-access charge: Universidad de Granada/CBUAObjective: To perform a comprehensive review of the use of artificial intelligence (AI) and machine learning (ML) in dentistry, providing the community with a broad insight on the different advances that these technologies and tools have produced, paying special attention to the area of esthetic dentistry and color research. Materials and methods: The comprehensive review was conducted in MEDLINE/ PubMed, Web of Science, and Scopus databases, for papers published in English language in the last 20 years. Results: Out of 3871 eligible papers, 120 were included for final appraisal. Study methodologies included deep learning (DL; n = 76), fuzzy logic (FL; n = 12), and other ML techniques (n = 32), which were mainly applied to disease identification, image segmentation, image correction, and biomimetic color analysis and modeling. Conclusions: The insight provided by the present work has reported outstanding results in the design of high-performance decision support systems for the aforementioned areas. The future of digital dentistry goes through the design of integrated approaches providing personalized treatments to patients. In addition, esthetic dentistry can benefit from those advances by developing models allowing a complete characterization of tooth color, enhancing the accuracy of dental restorations. Clinical significance: The use of AI and ML has an increasing impact on the dental profession and is complementing the development of digital technologies and tools, with a wide application in treatment planning and esthetic dentistry procedures.Spanish Ministry of Sciences, Innovation and Universities RTI2018-101674-B-I00 PGC2018-101904-A-100University of Granada project A.TEP. 280.UGR18Junta de Andalucia P20-00200Fapergs/Capes do Brasil grant 19/25510000928-3Universidad de Granada/CBU

    Machine Learning for Biomedical Application

    Get PDF
    Biomedicine is a multidisciplinary branch of medical science that consists of many scientific disciplines, e.g., biology, biotechnology, bioinformatics, and genetics; moreover, it covers various medical specialties. In recent years, this field of science has developed rapidly. This means that a large amount of data has been generated, due to (among other reasons) the processing, analysis, and recognition of a wide range of biomedical signals and images obtained through increasingly advanced medical imaging devices. The analysis of these data requires the use of advanced IT methods, which include those related to the use of artificial intelligence, and in particular machine learning. It is a summary of the Special Issue “Machine Learning for Biomedical Application”, briefly outlining selected applications of machine learning in the processing, analysis, and recognition of biomedical data, mostly regarding biosignals and medical images

    Creating high-resolution 3D cranial implant geometry using deep learning techniques

    Get PDF
    Creating a personalized implant for cranioplasty can be costly and aesthetically challenging, particularly for comminuted fractures that affect a wide area. Despite significant advances in deep learning techniques for 2D image completion, generating a 3D shape inpainting remains challenging due to the higher dimensionality and computational demands for 3D skull models. Here, we present a practical deep-learning approach to generate implant geometry from defective 3D skull models created from CT scans. Our proposed 3D reconstruction system comprises two neural networks that produce high-quality implant models suitable for clinical use while reducing training time. The first network repairs low-resolution defective models, while the second network enhances the volumetric resolution of the repaired model. We have tested our method in simulations and real-life surgical practices, producing implants that fit naturally and precisely match defect boundaries, particularly for skull defects above the Frankfort horizontal plane
    corecore