278 research outputs found

    Contextual Social Networking

    Get PDF
    The thesis centers around the multi-faceted research question of how contexts may be detected and derived that can be used for new context aware Social Networking services and for improving the usefulness of existing Social Networking services, giving rise to the notion of Contextual Social Networking. In a first foundational part, we characterize the closely related fields of Contextual-, Mobile-, and Decentralized Social Networking using different methods and focusing on different detailed aspects. A second part focuses on the question of how short-term and long-term social contexts as especially interesting forms of context for Social Networking may be derived. We focus on NLP based methods for the characterization of social relations as a typical form of long-term social contexts and on Mobile Social Signal Processing methods for deriving short-term social contexts on the basis of geometry of interaction and audio. We furthermore investigate, how personal social agents may combine such social context elements on various levels of abstraction. The third part discusses new and improved context aware Social Networking service concepts. We investigate special forms of awareness services, new forms of social information retrieval, social recommender systems, context aware privacy concepts and services and platforms supporting Open Innovation and creative processes. This version of the thesis does not contain the included publications because of copyrights of the journals etc. Contact in terms of the version with all included publications: Georg Groh, [email protected] zentrale Gegenstand der vorliegenden Arbeit ist die vielschichtige Frage, wie Kontexte detektiert und abgeleitet werden können, die dazu dienen können, neuartige kontextbewusste Social Networking Dienste zu schaffen und bestehende Dienste in ihrem Nutzwert zu verbessern. Die (noch nicht abgeschlossene) erfolgreiche Umsetzung dieses Programmes fĂĽhrt auf ein Konzept, das man als Contextual Social Networking bezeichnen kann. In einem grundlegenden ersten Teil werden die eng zusammenhängenden Gebiete Contextual Social Networking, Mobile Social Networking und Decentralized Social Networking mit verschiedenen Methoden und unter Fokussierung auf verschiedene Detail-Aspekte näher beleuchtet und in Zusammenhang gesetzt. Ein zweiter Teil behandelt die Frage, wie soziale Kurzzeit- und Langzeit-Kontexte als fĂĽr das Social Networking besonders interessante Formen von Kontext gemessen und abgeleitet werden können. Ein Fokus liegt hierbei auf NLP Methoden zur Charakterisierung sozialer Beziehungen als einer typischen Form von sozialem Langzeit-Kontext. Ein weiterer Schwerpunkt liegt auf Methoden aus dem Mobile Social Signal Processing zur Ableitung sinnvoller sozialer Kurzzeit-Kontexte auf der Basis von Interaktionsgeometrien und Audio-Daten. Es wird ferner untersucht, wie persönliche soziale Agenten Kontext-Elemente verschiedener Abstraktionsgrade miteinander kombinieren können. Der dritte Teil behandelt neuartige und verbesserte Konzepte fĂĽr kontextbewusste Social Networking Dienste. Es werden spezielle Formen von Awareness Diensten, neue Formen von sozialem Information Retrieval, Konzepte fĂĽr kontextbewusstes Privacy Management und Dienste und Plattformen zur UnterstĂĽtzung von Open Innovation und Kreativität untersucht und vorgestellt. Diese Version der Habilitationsschrift enthält die inkludierten Publikationen zurVermeidung von Copyright-Verletzungen auf Seiten der Journals u.a. nicht. Kontakt in Bezug auf die Version mit allen inkludierten Publikationen: Georg Groh, [email protected]

    Feature Space Augmentation: Improving Prediction Accuracy of Classical Problems in Cognitive Science and Computer Vison

    Get PDF
    The prediction accuracy in many classical problems across multiple domains has seen a rise since computational tools such as multi-layer neural nets and complex machine learning algorithms have become widely accessible to the research community. In this research, we take a step back and examine the feature space in two problems from very different domains. We show that novel augmentation to the feature space yields higher performance. Emotion Recognition in Adults from a Control Group: The objective is to quantify the emotional state of an individual at any time using data collected by wearable sensors. We define emotional state as a mixture of amusement, anger, disgust, fear, sadness, anxiety and neutral and their respective levels at any time. The generated model predicts an individual’s dominant state and generates an emotional spectrum, 1x7 vector indicating levels of each emotional state and anxiety. We present an iterative learning framework that alters the feature space uniquely to an individual’s emotion perception, and predicts the emotional state using the individual specific feature space. Hybrid Feature Space for Image Classification: The objective is to improve the accuracy of existing image recognition by leveraging text features from the images. As humans, we perceive objects using colors, dimensions, geometry and any textual information we can gather. Current image recognition algorithms rely exclusively on the first 3 and do not use the textual information. This study develops and tests an approach that trains a classifier on a hybrid text based feature space that has comparable accuracy to the state of the art CNN’s while being significantly inexpensive computationally. Moreover, when combined with CNN’S the approach yields a statistically significant boost in accuracy. Both models are validated using cross validation and holdout validation, and are evaluated against the state of the art

    Analysis and automatic identification of spontaneous emotions in speech from human-human and human-machine communication

    Get PDF
    383 p.This research mainly focuses on improving our understanding of human-human and human-machineinteractions by analysing paricipantsÂż emotional status. For this purpose, we have developed andenhanced Speech Emotion Recognition (SER) systems for both interactions in real-life scenarios,explicitly emphasising the Spanish language. In this framework, we have conducted an in-depth analysisof how humans express emotions using speech when communicating with other persons or machines inactual situations. Thus, we have analysed and studied the way in which emotional information isexpressed in a variety of true-to-life environments, which is a crucial aspect for the development of SERsystems. This study aimed to comprehensively understand the challenge we wanted to address:identifying emotional information on speech using machine learning technologies. Neural networks havebeen demonstrated to be adequate tools for identifying events in speech and language. Most of themaimed to make local comparisons between some specific aspects; thus, the experimental conditions weretailored to each particular analysis. The experiments across different articles (from P1 to P19) are hardlycomparable due to our continuous learning of dealing with the difficult task of identifying emotions inspeech. In order to make a fair comparison, additional unpublished results are presented in the Appendix.These experiments were carried out under identical and rigorous conditions. This general comparisonoffers an overview of the advantages and disadvantages of the different methodologies for the automaticrecognition of emotions in speech

    Automatic Ontology Generation Based On Semantic Audio Analysis

    Get PDF
    PhDOntologies provide an explicit conceptualisation of a domain and a uniform framework that represents domain knowledge in a machine interpretable format. The Semantic Web heavily relies on ontologies to provide well-defined meaning and support for automated services based on the description of semantics. However, considering the open, evolving and decentralised nature of the SemanticWeb – though many ontology engineering tools have been developed over the last decade – it can be a laborious and challenging task to deal with manual annotation, hierarchical structuring and organisation of data as well as maintenance of previously designed ontology structures. For these reasons, we investigate how to facilitate the process of ontology construction using semantic audio analysis. The work presented in this thesis contributes to solving the problems of knowledge acquisition and manual construction of ontologies. We develop a hybrid system that involves a formal method of automatic ontology generation for web-based audio signal processing applications. The proposed system uses timbre features extracted from audio recordings of various musical instruments. The proposed system is evaluated using a database of isolated notes and melodic phrases recorded in neutral conditions, and we make a detailed comparison between musical instrument recognition models to investigate their effects on the automatic ontology generation system. Finally, the automatically-generated musical instrument ontologies are evaluated in comparison with the terminology and hierarchical structure of the Hornbostel and Sachs organology system. We show that the proposed system is applicable in multi-disciplinary fields that deal with knowledge management and knowledge representation issues.Fundings from EPSRC, OMRAS-2 and NEMA projects

    Extraction and representation of semantic information in digital media

    Get PDF

    Multimodal Data Analysis of Dyadic Interactions for an Automated Feedback System Supporting Parent Implementation of Pivotal Response Treatment

    Get PDF
    abstract: Parents fulfill a pivotal role in early childhood development of social and communication skills. In children with autism, the development of these skills can be delayed. Applied behavioral analysis (ABA) techniques have been created to aid in skill acquisition. Among these, pivotal response treatment (PRT) has been empirically shown to foster improvements. Research into PRT implementation has also shown that parents can be trained to be effective interventionists for their children. The current difficulty in PRT training is how to disseminate training to parents who need it, and how to support and motivate practitioners after training. Evaluation of the parents’ fidelity to implementation is often undertaken using video probes that depict the dyadic interaction occurring between the parent and the child during PRT sessions. These videos are time consuming for clinicians to process, and often result in only minimal feedback for the parents. Current trends in technology could be utilized to alleviate the manual cost of extracting data from the videos, affording greater opportunities for providing clinician created feedback as well as automated assessments. The naturalistic context of the video probes along with the dependence on ubiquitous recording devices creates a difficult scenario for classification tasks. The domain of the PRT video probes can be expected to have high levels of both aleatory and epistemic uncertainty. Addressing these challenges requires examination of the multimodal data along with implementation and evaluation of classification algorithms. This is explored through the use of a new dataset of PRT videos. The relationship between the parent and the clinician is important. The clinician can provide support and help build self-efficacy in addition to providing knowledge and modeling of treatment procedures. Facilitating this relationship along with automated feedback not only provides the opportunity to present expert feedback to the parent, but also allows the clinician to aid in personalizing the classification models. By utilizing a human-in-the-loop framework, clinicians can aid in addressing the uncertainty in the classification models by providing additional labeled samples. This will allow the system to improve classification and provides a person-centered approach to extracting multimodal data from PRT video probes.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Essential Speech and Language Technology for Dutch: Results by the STEVIN-programme

    Get PDF
    Computational Linguistics; Germanic Languages; Artificial Intelligence (incl. Robotics); Computing Methodologie

    Building Blocks for IoT Analytics Internet-of-Things Analytics

    Get PDF
    Internet-of-Things (IoT) Analytics are an integral element of most IoT applications, as it provides the means to extract knowledge, drive actuation services and optimize decision making. IoT analytics will be a major contributor to IoT business value in the coming years, as it will enable organizations to process and fully leverage large amounts of IoT data, which are nowadays largely underutilized. The Building Blocks of IoT Analytics is devoted to the presentation the main technology building blocks that comprise advanced IoT analytics systems. It introduces IoT analytics as a special case of BigData analytics and accordingly presents leading edge technologies that can be deployed in order to successfully confront the main challenges of IoT analytics applications. Special emphasis is paid in the presentation of technologies for IoT streaming and semantic interoperability across diverse IoT streams. Furthermore, the role of cloud computing and BigData technologies in IoT analytics are presented, along with practical tools for implementing, deploying and operating non-trivial IoT applications. Along with the main building blocks of IoT analytics systems and applications, the book presents a series of practical applications, which illustrate the use of these technologies in the scope of pragmatic applications. Technical topics discussed in the book include: Cloud Computing and BigData for IoT analyticsSearching the Internet of ThingsDevelopment Tools for IoT Analytics ApplicationsIoT Analytics-as-a-ServiceSemantic Modelling and Reasoning for IoT AnalyticsIoT analytics for Smart BuildingsIoT analytics for Smart CitiesOperationalization of IoT analyticsEthical aspects of IoT analyticsThis book contains both research oriented and applied articles on IoT analytics, including several articles reflecting work undertaken in the scope of recent European Commission funded projects in the scope of the FP7 and H2020 programmes. These articles present results of these projects on IoT analytics platforms and applications. Even though several articles have been contributed by different authors, they are structured in a well thought order that facilitates the reader either to follow the evolution of the book or to focus on specific topics depending on his/her background and interest in IoT and IoT analytics technologies. The compilation of these articles in this edited volume has been largely motivated by the close collaboration of the co-authors in the scope of working groups and IoT events organized by the Internet-of-Things Research Cluster (IERC), which is currently a part of EU's Alliance for Internet of Things Innovation (AIOTI)

    Cultural Heritage Storytelling, Engagement and Management in the Era of Big Data and the Semantic Web

    Get PDF
    The current Special Issue launched with the aim of further enlightening important CH areas, inviting researchers to submit original/featured multidisciplinary research works related to heritage crowdsourcing, documentation, management, authoring, storytelling, and dissemination. Audience engagement is considered very important at both sites of the CH production–consumption chain (i.e., push and pull ends). At the same time, sustainability factors are placed at the center of the envisioned analysis. A total of eleven (11) contributions were finally published within this Special Issue, enlightening various aspects of contemporary heritage strategies placed in today’s ubiquitous society. The finally published papers are related but not limited to the following multidisciplinary topics:Digital storytelling for cultural heritage;Audience engagement in cultural heritage;Sustainability impact indicators of cultural heritage;Cultural heritage digitization, organization, and management;Collaborative cultural heritage archiving, dissemination, and management;Cultural heritage communication and education for sustainable development;Semantic services of cultural heritage;Big data of cultural heritage;Smart systems for Historical cities – smart cities;Smart systems for cultural heritage sustainability

    Building Blocks for IoT Analytics Internet-of-Things Analytics

    Get PDF
    Internet-of-Things (IoT) Analytics are an integral element of most IoT applications, as it provides the means to extract knowledge, drive actuation services and optimize decision making. IoT analytics will be a major contributor to IoT business value in the coming years, as it will enable organizations to process and fully leverage large amounts of IoT data, which are nowadays largely underutilized. The Building Blocks of IoT Analytics is devoted to the presentation the main technology building blocks that comprise advanced IoT analytics systems. It introduces IoT analytics as a special case of BigData analytics and accordingly presents leading edge technologies that can be deployed in order to successfully confront the main challenges of IoT analytics applications. Special emphasis is paid in the presentation of technologies for IoT streaming and semantic interoperability across diverse IoT streams. Furthermore, the role of cloud computing and BigData technologies in IoT analytics are presented, along with practical tools for implementing, deploying and operating non-trivial IoT applications. Along with the main building blocks of IoT analytics systems and applications, the book presents a series of practical applications, which illustrate the use of these technologies in the scope of pragmatic applications. Technical topics discussed in the book include: Cloud Computing and BigData for IoT analyticsSearching the Internet of ThingsDevelopment Tools for IoT Analytics ApplicationsIoT Analytics-as-a-ServiceSemantic Modelling and Reasoning for IoT AnalyticsIoT analytics for Smart BuildingsIoT analytics for Smart CitiesOperationalization of IoT analyticsEthical aspects of IoT analyticsThis book contains both research oriented and applied articles on IoT analytics, including several articles reflecting work undertaken in the scope of recent European Commission funded projects in the scope of the FP7 and H2020 programmes. These articles present results of these projects on IoT analytics platforms and applications. Even though several articles have been contributed by different authors, they are structured in a well thought order that facilitates the reader either to follow the evolution of the book or to focus on specific topics depending on his/her background and interest in IoT and IoT analytics technologies. The compilation of these articles in this edited volume has been largely motivated by the close collaboration of the co-authors in the scope of working groups and IoT events organized by the Internet-of-Things Research Cluster (IERC), which is currently a part of EU's Alliance for Internet of Things Innovation (AIOTI)
    • …
    corecore