313 research outputs found

    Decentralized Federated Learning for Epileptic Seizures Detection in Low-Power Wearable Systems

    Get PDF
    In healthcare, data privacy of patients regulations prohibits data from being moved outside the hospital, preventing international medical datasets from being centralized for AI training. Federated learning (FL) is a data privacy-focused method that trains a global model by aggregating local models from hospitals. Existing FL techniques adopt a central server-based network topology, where the server assembles the local models trained in each hospital to create a global model. However, the server could be a point of failure, and models trained in FL usually have worse performance than those trained in the centralized learning manner when the patient's data are not independent and identically distributed (Non-IID) in the hospitals. This paper presents a decentralized FL framework, including training with adaptive ensemble learning and a deployment phase using knowledge distillation. The adaptive ensemble learning step in the training phase leads to the acquisition of a specific model for each hospital that is the optimal combination of local models and models from other available hospitals. This step solves the non-IID challenges in each hospital. The deployment phase adjusts the model's complexity to meet the resource constraints of wearable systems. We evaluated the performance of our approach on edge computing platforms using EPILEPSIAE and TUSZ databases, which are public epilepsy datasets.RYC2021-032853-

    Importance of methodological choices in data manipulation for validating epileptic seizure detection models

    Get PDF
    Epilepsy is a chronic neurological disorder that affects a significant portion of the human population and imposes serious risks in the daily life. Despite advances in machine learning and IoT, small, non-stigmatizing wearable devices for continuous monitoring and detection in outpatient environments are not yet widely available. Part of the reason is the complexity of epilepsy itself, including highly imbalanced data, multimodal nature, and very subject-specific signatures. However, another problem is the heterogeneity of methodological approaches in research, leading to slower progress, difficulty in comparing results, and low reproducibility. Therefore, this article identifies a wide range of methodological decisions that must be made and reported when training and evaluating the performance of epilepsy detection systems. We characterize the influence of individual choices using a typical ensemble random-forest model and the publicly available CHB-MIT database, providing a broader picture of each decision and giving good-practice recommendations, based on our experience, where possible.RYC2021-032853-

    Deep learning approach for epileptic seizure detection

    Get PDF
    Abstract. Epilepsy is the most common brain disorder that affects approximately fifty million people worldwide, according to the World Health Organization. The diagnosis of epilepsy relies on manual inspection of EEG, which is error-prone and time-consuming. Automated epileptic seizure detection of EEG signal can reduce the diagnosis time and facilitate targeting of treatment for patients. Current detection approaches mainly rely on the features that are designed manually by domain experts. The features are inflexible for the detection of a variety of complex patterns in a large amount of EEG data. Moreover, the EEG is non-stationary signal and seizure patterns vary across patients and recording sessions. EEG data always contain numerous noise types that negatively affect the detection accuracy of epileptic seizures. To address these challenges deep learning approaches are examined in this paper. Deep learning methods were applied to a large publicly available dataset, the Children’s Hospital of Boston-Massachusetts Institute of Technology dataset (CHB-MIT). The present study includes three experimental groups that are grouped based on the pre-processing steps. The experimental groups contain 3–4 experiments that differ between their objectives. The time-series EEG data is first pre-processed by certain filters and normalization techniques, and then the pre-processed signal was segmented into a sequence of non-overlapping epochs. Second, time series data were transformed into different representations of input signals. In this study time-series EEG signal, magnitude spectrograms, 1D-FFT, 2D-FFT, 2D-FFT magnitude spectrum and 2D-FFT phase spectrum were investigated and compared with each other. Third, time-domain or frequency-domain signals were used separately as a representation of input data of VGG or DenseNet 1D. The best result was achieved with magnitude spectrograms used as representation of input data in VGG model: accuracy of 0.98, sensitivity of 0.71 and specificity of 0.998 with subject dependent data. VGG along with magnitude spectrograms produced promising results for building personalized epileptic seizure detector. There was not enough data for VGG and DenseNet 1D to build subject-dependent classifier.Epileptisten kohtausten havaitseminen syväoppimisella lähestymistavalla. Tiivistelmä. Epilepsia on yleisin aivosairaus, joka Maailman terveysjärjestön mukaan vaikuttaa noin viiteenkymmeneen miljoonaan ihmiseen maailmanlaajuisesti. Epilepsian diagnosointi perustuu EEG:n manuaaliseen tarkastamiseen, mikä on virhealtista ja aikaa vievää. Automaattinen epileptisten kohtausten havaitseminen EEG-signaalista voi potentiaalisesti vähentää diagnoosiaikaa ja helpottaa potilaan hoidon kohdentamista. Nykyiset tunnistusmenetelmät tukeutuvat pääasiassa piirteisiin, jotka asiantuntijat ovat määritelleet manuaalisesti, mutta ne ovat joustamattomia monimutkaisten ilmiöiden havaitsemiseksi suuresta määrästä EEG-dataa. Lisäksi, EEG on epästationäärinen signaali ja kohtauspiirteet vaihtelevat potilaiden ja tallennusten välillä ja EEG-data sisältää aina useita kohinatyyppejä, jotka huonontavat epilepsiakohtauksen havaitsemisen tarkkuutta. Näihin haasteisiin vastaamiseksi tässä diplomityössä tarkastellaan soveltuvatko syväoppivat menetelmät epilepsian havaitsemiseen EEG-tallenteista. Aineistona käytettiin suurta julkisesti saatavilla olevaa Bostonin Massachusetts Institute of Technology lastenklinikan tietoaineistoa (CHB-MIT). Tämän työn tutkimus sisältää kolme koeryhmää, jotka eroavat toisistaan esikäsittelyvaiheiden osalta: aikasarja-EEG-data esikäsiteltiin perinteisten suodattimien ja normalisointitekniikoiden avulla, ja näin esikäsitelty signaali segmentoitiin epookkeihin. Kukin koeryhmä sisältää 3–4 koetta, jotka eroavat menetelmiltään ja tavoitteiltaan. Kussakin niistä epookkeihin jaettu aikasarjadata muutettiin syötesignaalien erilaisiksi esitysmuodoiksi. Tässä tutkimuksessa tutkittiin ja verrattiin keskenään EEG-signaalia sellaisenaan, EEG-signaalin amplitudi-spektrogrammeja, 1D-FFT-, 2D-FFT-, 2D-FFT-amplitudi- ja 2D-FFT -vaihespektriä. Näin saatuja aika- ja taajuusalueen signaaleja käytettiin erikseen VGG- tai DenseNet 1D -mallien syötetietoina. Paras tulos saatiin VGG-mallilla kun syötetietona oli amplitudi-spektrogrammi ja tällöin tarkkuus oli 0,98, herkkyys 0,71 ja spesifisyys 0,99 henkilöstä riippuvaisella EEG-datalla. VGG yhdessä amplitudi-spektrogrammien kanssa tuottivat lupaavia tuloksia henkilökohtaisen epilepsiakohtausdetektorin rakentamiselle. VGG- ja DenseNet 1D -malleille ei ollut tarpeeksi EEG-dataa henkilöstä riippumattoman luokittelijan opettamiseksi

    Electrocardiogram Monitoring Wearable Devices and Artificial-Intelligence-Enabled Diagnostic Capabilities: A Review

    Get PDF
    Worldwide, population aging and unhealthy lifestyles have increased the incidence of high-risk health conditions such as cardiovascular diseases, sleep apnea, and other conditions. Recently, to facilitate early identification and diagnosis, efforts have been made in the research and development of new wearable devices to make them smaller, more comfortable, more accurate, and increasingly compatible with artificial intelligence technologies. These efforts can pave the way to the longer and continuous health monitoring of different biosignals, including the real-time detection of diseases, thus providing more timely and accurate predictions of health events that can drastically improve the healthcare management of patients. Most recent reviews focus on a specific category of disease, the use of artificial intelligence in 12-lead electrocardiograms, or on wearable technology. However, we present recent advances in the use of electrocardiogram signals acquired with wearable devices or from publicly available databases and the analysis of such signals with artificial intelligence methods to detect and predict diseases. As expected, most of the available research focuses on heart diseases, sleep apnea, and other emerging areas, such as mental stress. From a methodological point of view, although traditional statistical methods and machine learning are still widely used, we observe an increasing use of more advanced deep learning methods, specifically architectures that can handle the complexity of biosignal data. These deep learning methods typically include convolutional and recurrent neural networks. Moreover, when proposing new artificial intelligence methods, we observe that the prevalent choice is to use publicly available databases rather than collecting new data

    Neuromorphic Neuromodulation: Towards the next generation of on-device AI-revolution in electroceuticals

    Full text link
    Neuromodulation techniques have emerged as promising approaches for treating a wide range of neurological disorders, precisely delivering electrical stimulation to modulate abnormal neuronal activity. While leveraging the unique capabilities of artificial intelligence (AI) holds immense potential for responsive neurostimulation, it appears as an extremely challenging proposition where real-time (low-latency) processing, low power consumption, and heat constraints are limiting factors. The use of sophisticated AI-driven models for personalized neurostimulation depends on back-telemetry of data to external systems (e.g. cloud-based medical mesosystems and ecosystems). While this can be a solution, integrating continuous learning within implantable neuromodulation devices for several applications, such as seizure prediction in epilepsy, is an open question. We believe neuromorphic architectures hold an outstanding potential to open new avenues for sophisticated on-chip analysis of neural signals and AI-driven personalized treatments. With more than three orders of magnitude reduction in the total data required for data processing and feature extraction, the high power- and memory-efficiency of neuromorphic computing to hardware-firmware co-design can be considered as the solution-in-the-making to resource-constraint implantable neuromodulation systems. This could lead to a new breed of closed-loop responsive and personalised feedback, which we describe as Neuromorphic Neuromodulation. This can empower precise and adaptive modulation strategies by integrating neuromorphic AI as tightly as possible to the site of the sensors and stimulators. This paper presents a perspective on the potential of Neuromorphic Neuromodulation, emphasizing its capacity to revolutionize implantable brain-machine microsystems and significantly improve patient-specificity.Comment: 17 page

    Automatic Detection of Epileptic Seizures in Neonatal Intensive Care Units through EEG, ECG and Video Recordings: A Survey

    Get PDF
    In Neonatal Intensive Care Units (NICUs), the early detection of neonatal seizures is of utmost importance for a timely, effective and efficient clinical intervention. The continuous video electroencephalogram (v-EEG) is the gold standard for monitoring neonatal seizures, but it requires specialized equipment and expert staff available 24/24h. The purpose of this study is to present an overview of the main Neonatal Seizure Detection (NSD) systems developed during the last ten years that implement Artificial Intelligence techniques to detect and report the temporal occurrence of neonatal seizures. Expert systems based on the analysis of EEG, ECG and video recordings are investigated, and their usefulness as support tools for the medical staff in detecting and diagnosing neonatal seizures in NICUs is evaluated. EEG-based NSD systems show better performance than systems based on other signals. Recently ECG analysis, particularly the related HRV analysis, seems to be a promising marker of brain damage. Moreover, video analysis could be helpful to identify inconspicuous but pathological movements. This study highlights possible future developments of the NSD systems: a multimodal approach that exploits and combines the results of the EEG, ECG and video approaches and a system able to automatically characterize etiologies might provide additional support to clinicians in seizures diagnosis
    corecore