3,275 research outputs found

    Supervised Speaker Embedding De-Mixing in Two-Speaker Environment

    Full text link
    Separating different speaker properties from a multi-speaker environment is challenging. Instead of separating a two-speaker signal in signal space like speech source separation, a speaker embedding de-mixing approach is proposed. The proposed approach separates different speaker properties from a two-speaker signal in embedding space. The proposed approach contains two steps. In step one, the clean speaker embeddings are learned and collected by a residual TDNN based network. In step two, the two-speaker signal and the embedding of one of the speakers are both input to a speaker embedding de-mixing network. The de-mixing network is trained to generate the embedding of the other speaker by reconstruction loss. Speaker identification accuracy and the cosine similarity score between the clean embeddings and the de-mixed embeddings are used to evaluate the quality of the obtained embeddings. Experiments are done in two kind of data: artificial augmented two-speaker data (TIMIT) and real world recording of two-speaker data (MC-WSJ). Six different speaker embedding de-mixing architectures are investigated. Comparing with the performance on the clean speaker embeddings, the obtained results show that one of the proposed architectures obtained close performance, reaching 96.9% identification accuracy and 0.89 cosine similarity.Comment: Published at SLT202

    Deep Learning for Audio Signal Processing

    Full text link
    Given the recent surge in developments of deep learning, this article provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences between the domains, highlighting general methods, problems, key references, and potential for cross-fertilization between areas. The dominant feature representations (in particular, log-mel spectra and raw waveform) and deep learning models are reviewed, including convolutional neural networks, variants of the long short-term memory architecture, as well as more audio-specific neural network models. Subsequently, prominent deep learning application areas are covered, i.e. audio recognition (automatic speech recognition, music information retrieval, environmental sound detection, localization and tracking) and synthesis and transformation (source separation, audio enhancement, generative models for speech, sound, and music synthesis). Finally, key issues and future questions regarding deep learning applied to audio signal processing are identified.Comment: 15 pages, 2 pdf figure

    Unsupervised Learning of Semantic Audio Representations

    Full text link
    Even in the absence of any explicit semantic annotation, vast collections of audio recordings provide valuable information for learning the categorical structure of sounds. We consider several class-agnostic semantic constraints that apply to unlabeled nonspeech audio: (i) noise and translations in time do not change the underlying sound category, (ii) a mixture of two sound events inherits the categories of the constituents, and (iii) the categories of events in close temporal proximity are likely to be the same or related. Without labels to ground them, these constraints are incompatible with classification loss functions. However, they may still be leveraged to identify geometric inequalities needed for triplet loss-based training of convolutional neural networks. The result is low-dimensional embeddings of the input spectrograms that recover 41% and 84% of the performance of their fully-supervised counterparts when applied to downstream query-by-example sound retrieval and sound event classification tasks, respectively. Moreover, in limited-supervision settings, our unsupervised embeddings double the state-of-the-art classification performance.Comment: Submitted to ICASSP 201

    Tune-In: Training Under Negative Environments with Interference for Attention Networks Simulating Cocktail Party Effect

    Full text link
    We study the cocktail party problem and propose a novel attention network called Tune-In, abbreviated for training under negative environments with interference. It firstly learns two separate spaces of speaker-knowledge and speech-stimuli based on a shared feature space, where a new block structure is designed as the building block for all spaces, and then cooperatively solves different tasks. Between the two spaces, information is cast towards each other via a novel cross- and dual-attention mechanism, mimicking the bottom-up and top-down processes of a human's cocktail party effect. It turns out that substantially discriminative and generalizable speaker representations can be learnt in severely interfered conditions via our self-supervised training. The experimental results verify this seeming paradox. The learnt speaker embedding has superior discriminative power than a standard speaker verification method; meanwhile, Tune-In achieves remarkably better speech separation performances in terms of SI-SNRi and SDRi consistently in all test modes, and especially at lower memory and computational consumption, than state-of-the-art benchmark systems.Comment: Accepted in AAAI 202

    Online Speaker Separation Using Deep Clustering

    Get PDF
    In this thesis, a low-latency variant of speaker-independent deep clustering method is proposed for speaker separation. Compared to the offline deep clustering separation system, bidirectional long-short term memory networks (BLSTMs) are replaced with long-short term memory networks (LSTMs). The reason is that the data has to be fed to the BLSTM networks both forward and backward directions. Additionally, the final outputs depend on both directions, which make online processing not possible. Also, 32 ms synthesis window is replaced with 8 ms in order to cooperate with low- latency applications like hearing aids since the algorithmic latency depends upon the length of synthesis window. Furthermore, the beginning of the audio mixture, here, referred as buffer, is used to get the cluster centers for the constituent speakers in the mixture serving as the initialization purpose. Later, those centers are used to assign clusters for the rest of the mixture to achieve speaker separation with the latency of 8 ms. The algorithm is evaluated on the Wall Street Journal corpus (WSJ0). Changing the networks from BLSTM to LSTM while keeping the same window length degrades the separation performance measured by signal-to-distortion ratio (SDR) by 1.0 dB, which implies that the future information is important for the separation. For investigating the effect of window length, keeping the same network structure (LSTM), by changing window length from 32 ms to 8 ms, another 1.1 dB drop in SDR is found. For the low-latency deep clustering speaker separation system, different duration of buffer is studied. It is observed that initially, the separation performance increases as the buffer increases. However, with buffer length of 0.3 s, the separation performance keeps steady even by increasing the buffer. Compared to offline deep clustering separation system, degradation of 2.8 dB in SDR is observed for online system

    Self-supervised learning for robust voice cloning

    Full text link
    Voice cloning is a difficult task which requires robust and informative features incorporated in a high quality TTS system in order to effectively copy an unseen speaker's voice. In our work, we utilize features learned in a self-supervised framework via the Bootstrap Your Own Latent (BYOL) method, which is shown to produce high quality speech representations when specific audio augmentations are applied to the vanilla algorithm. We further extend the augmentations in the training procedure to aid the resulting features to capture the speaker identity and to make them robust to noise and acoustic conditions. The learned features are used as pre-trained utterance-level embeddings and as inputs to a Non-Attentive Tacotron based architecture, aiming to achieve multispeaker speech synthesis without utilizing additional speaker features. This method enables us to train our model in an unlabeled multispeaker dataset as well as use unseen speaker embeddings to copy a speaker's voice. Subjective and objective evaluations are used to validate the proposed model, as well as the robustness to the acoustic conditions of the target utterance.Comment: Accepted to INTERSPEECH 202
    corecore