142 research outputs found

    Advances in pre-processing and model generation for mass spectrometric data analysis

    Get PDF
    The analysis of complex signals as obtained by mass spectrometric measurements is complicated and needs an appropriate representation of the data. Thereby the kind of preprocessing, feature extraction as well as the used similarity measure are of particular importance. Focusing on biomarker analysis and taking the functional nature of the data into account this task is even more complicated. A new mass spectrometry tailored data preprocessing is shown, discussed and analyzed in a clinical proteom study compared to a standard setting

    Pilot multi-omic analysis of human bile from benign and malignant biliary strictures: a machine-learning approach

    Get PDF
    Cholangiocarcinoma (CCA) and pancreatic adenocarcinoma (PDAC) may lead to the development of extrahepatic obstructive cholestasis. However, biliary stenoses can also be caused by benign conditions, and the identification of their etiology still remains a clinical challenge. We performed metabolomic and proteomic analyses of bile from patients with benign (n = 36) and malignant conditions, CCA (n = 36) or PDAC (n = 57), undergoing endoscopic retrograde cholangiopancreatography with the aim of characterizing bile composition in biliopancreatic disease and identifying biomarkers for the differential diagnosis of biliary strictures. Comprehensive analyses of lipids, bile acids and small molecules were carried out using mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (1H-NMR) in all patients. MS analysis of bile proteome was performed in five patients per group. We implemented artificial intelligence tools for the selection of biomarkers and algorithms with predictive capacity. Our machine-learning pipeline included the generation of synthetic data with properties of real data, the selection of potential biomarkers (metabolites or proteins) and their analysis with neural networks (NN). Selected biomarkers were then validated with real data. We identified panels of lipids (n = 10) and proteins (n = 5) that when analyzed with NN algorithms discriminated between patients with and without cancer with an unprecedented accuracy.This research was funded by: Instituto de Salud Carlos III (ISCIII) co-financed by Fondo Europeo de Desarrollo Regional (FEDER) Una manera de hacer Europa, grant numbers: PI16/01126 (M.A.A.), PI19/00819 (M.J.M. and J.J.G.M.), PI15/01132, PI18/01075 and Miguel Servet Program CON14/00129 (J.M.B.); Fundación Científica de la Asociación Española Contra el Cáncer (AECC Scientific Foundation), grant name: Rare Cancers 2017 (J.M.U., M.L.M., J.M.B., M.J.M., R.I.R.M., M.G.F.-B., C.B., M.A.A.); Gobierno de Navarra Salud, grant number 58/17 (J.M.U., M.A.A.); La Caixa Foundation, grant name: HEPACARE (C.B., M.A.A.); AMMF The Cholangiocarcinoma Charity, UK, grant number: 2018/117 (F.J.C. and M.A.A.); PSC Partners US, PSC Supports UK, grant number 06119JB (J.M.B.); Horizon 2020 (H2020) ESCALON project, grant number H2020-SC1-BHC-2018–2020 (J.M.B.); BIOEF (Basque Foundation for Innovation and Health Research: EiTB Maratoia, grant numbers BIO15/CA/016/BD (J.M.B.) and BIO15/CA/011 (M.A.A.). Department of Health of the Basque Country, grant number 2017111010 (J.M.B.). La Caixa Foundation, grant number: LCF/PR/HP17/52190004 (M.L.M.), Mineco-Feder, grant number SAF2017-87301-R (M.L.M.), Fundación BBVA grant name: Ayudas a Equipos de Investigación Científica Umbrella 2018 (M.L.M.). MCIU, grant number: Severo Ochoa Excellence Accreditation SEV-2016-0644 (M.L.M.). Part of the equipment used in this work was co-funded by the Generalitat Valenciana and European Regional Development Fund (FEDER) funds (PO FEDER of Comunitat Valenciana 2014–2020). Gobierno de Navarra fellowship to L.C. (Leticia Colyn); AECC post-doctoral fellowship to M.A.; Ramón y Cajal Program contracts RYC-2014-15242 and RYC2018-024475-1 to F.J.C. and M.G.F.-B., respectively. The generous support from: Fundación Eugenio Rodríguez Pascual, Fundación Echébano, Fundación Mario Losantos, Fundación M Torres and Mr. Eduardo Avila are acknowledged. The CNB-CSIC Proteomics Unit belongs to ProteoRed, PRB3-ISCIII, supported by grant PT17/0019/0001 (F.J.C.). Comunidad de Madrid Grant B2017/BMD-3817 (F.J.C.).Peer reviewe

    Non-invasive screening of breast cancer from fingertip smears—a proof of concept study

    Get PDF
    Breast cancer is a global health issue affecting 2.3 million women per year, causing death in over 600,000. Mammography (and biopsy) is the gold standard for screening and diagnosis. Whilst effective, this test exposes individuals to radiation, has limitations to its sensitivity and specificity and may cause moderate to severe discomfort. Some women may also find this test culturally unacceptable. This proof-of-concept study, combining bottom-up proteomics with Matrix Assisted Laser Desorption Ionisation Mass Spectrometry (MALDI MS) detection, explores the potential for a non-invasive technique for the early detection of breast cancer from fingertip smears. A cohort of 15 women with either benign breast disease (n = 5), early breast cancer (n = 5) or metastatic breast cancer (n = 5) were recruited from a single UK breast unit. Fingertips smears were taken from each patient and from each of the ten digits, either at the time of diagnosis or, for metastatic patients, during active treatment. A number of statistical analyses and machine learning approaches were investigated and applied to the resulting mass spectral dataset. The highest performing predictive method, a 3-class Multilayer Perceptron neural network, yielded an accuracy score of 97.8% when categorising unseen MALDI MS spectra as either the benign, early or metastatic cancer classes. These findings support the need for further research into the use of sweat deposits (in the form of fingertip smears or fingerprints) for non-invasive screening of breast cancer

    LC-MS/MS-based proteome profiling in Daphnia pulex and Daphnia longicephala: the Daphnia pulex genome database as a key for high throughput proteomics in Daphnia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Daphniids, commonly known as waterfleas, serve as important model systems for ecology, evolution and the environmental sciences. The sequencing and annotation of the <it>Daphnia pulex </it>genome both open future avenues of research on this model organism. As proteomics is not only essential to our understanding of cell function, and is also a powerful validation tool for predicted genes in genome annotation projects, a first proteomic dataset is presented in this article.</p> <p>Results</p> <p>A comprehensive set of 701,274 peptide tandem-mass-spectra, derived from <it>Daphnia pulex</it>, was generated, which lead to the identification of 531 proteins. To measure the impact of the <it>Daphnia pulex </it>filtered models database for mass spectrometry based <it>Daphnia </it>protein identification, this result was compared with results obtained with the Swiss-Prot and the <it>Drosophila melanogaster </it>database. To further validate the utility of the <it>Daphnia pulex </it>database for research on other <it>Daphnia </it>species, additional 407,778 peptide tandem-mass-spectra, obtained from <it>Daphnia longicephala</it>, were generated and evaluated, leading to the identification of 317 proteins.</p> <p>Conclusion</p> <p>Peptides identified in our approach provide the first experimental evidence for the translation of a broad variety of predicted coding regions within the <it>Daphnia </it>genome. Furthermore it could be demonstrated that identification of <it>Daphnia longicephala </it>proteins using the <it>Daphnia pulex </it>protein database is feasible but shows a slightly reduced identification rate. Data provided in this article clearly demonstrates that the <it>Daphnia </it>genome database is the key for mass spectrometry based high throughput proteomics in <it>Daphnia</it>.</p

    iTRAQ Quantitative Proteomic Analysis of Vitreous from Patients with Retinal Detachment

    Get PDF
    Rhegmatogenous retinal detachment (RRD) is a potentially blinding condition characterized by a physical separation between neurosensory retina and retinal pigment epithelium. Quantitative proteomics can help to understand the changes that occur at the cellular level during RRD, providing additional information about the molecular mechanisms underlying its pathogenesis. In the present study, iTRAQ labeling was combined with two-dimensional LC-ESI-MS/MS to find expression changes in the proteome of vitreous from patients with RRD when compared to control samples. A total of 150 proteins were found differentially expressed in the vitreous of patients with RRD, including 96 overexpressed and 54 underexpressed. Several overexpressed proteins, several such as glycolytic enzymes (fructose-bisphosphate aldolase A, gamma-enolase, and phosphoglycerate kinase 1), glucose transporters (GLUT-1), growth factors (metalloproteinase inhibitor 1), and serine protease inhibitors (plasminogen activator inhibitor 1) are regulated by HIF-1, which suggests that HIF-1 signaling pathway can be triggered in response to RRD. Also, the accumulation of photoreceptor proteins, including phosducin, rhodopsin, and s-arrestin, and vimentin in vitreous may indicate that photoreceptor degeneration occurs in RRD. Also, the accumulation of photoreceptor proteins, including phosducin, rhodopsin, and s-arrestin, and vimentin in vitreous may indicate that photoreceptor degeneration occurs in RRD. Nevertheless, the differentially expressed proteins found in this study suggest that different mechanisms are activated after RRD to promote the survival of retinal cells through complex cellular responses.CENTRO-07-ST24-FEDER-002014; POCI-01-0145-FEDER-007491; CNB-CSIC proteomics lab is a member of ProteoRed, supported by PRB2-ISCIII grant [PT13/0001]; Novartis Farma-Produtos Farmacêuticos; PhD fellowship of Sciences Faculty financed by ICI and Santander.info:eu-repo/semantics/publishedVersio

    To metabolomics and beyond: a technological portfolio to investigate cancer metabolism

    Get PDF
    Tumour cells have exquisite flexibility in reprogramming their metabolism in order to support tumour initiation, progression, metastasis and resistance to therapies. These reprogrammed activities include a complete rewiring of the bioenergetic, biosynthetic and redox status to sustain the increased energetic demand of the cells. Over the last decades, the cancer metabolism field has seen an explosion of new biochemical technologies giving more tools than ever before to navigate this complexity. Within a cell or a tissue, the metabolites constitute the direct signature of the molecular phenotype and thus their profiling has concrete clinical applications in oncology. Metabolomics and fluxomics, are key technological approaches that mainly revolutionized the field enabling researchers to have both a qualitative and mechanistic model of the biochemical activities in cancer. Furthermore, the upgrade from bulk to single-cell analysis technologies provided unprecedented opportunity to investigate cancer biology at cellular resolution allowing an in depth quantitative analysis of complex and heterogenous diseases. More recently, the advent of functional genomic screening allowed the identification of molecular pathways, cellular processes, biomarkers and novel therapeutic targets that in concert with other technologies allow patient stratification and identification of new treatment regimens. This review is intended to be a guide for researchers to cancer metabolism, highlighting current and emerging technologies, emphasizing advantages, disadvantages and applications with the potential of leading the development of innovative anti-cancer therapies

    Statistical methods and resources for biomarker discovery using metabolomics.

    Get PDF
    Metabolomics is a dynamic tool for elucidating biochemical changes in human health and disease. Metabolic profiles provide a close insight into physiological states and are highly volatile to genetic and environmental perturbations. Variation in metabolic profiles can inform mechanisms of pathology, providing potential biomarkers for diagnosis and assessment of the risk of contracting a disease. With the advancement of high-throughput technologies, large-scale metabolomics data sources have become abundant. As such, careful statistical analysis of intricate metabolomics data is essential for deriving relevant and robust results that can be deployed in real-life clinical settings. Multiple tools have been developed for both data analysis and interpretations. In this review, we survey statistical approaches and corresponding statistical tools that are available for discovery of biomarkers using metabolomics.Open Access funding provided by the Qatar National Library. This research was funded by the Qatar National Research Fund (QNRF), grant number NPRP13S-1230-190008

    The Metabolomic Profile in Amyotrophic Lateral Sclerosis Changes According to the Progression of the Disease: An Exploratory Study

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a multifactorial neurodegenerative pathology of the upper or lower motor neuron. Evaluation of ALS progression is based on clinical outcomes considering the impairment of body sites. ALS has been extensively investigated in the pathogenetic mechanisms and the clinical profile; however, no molecular biomarkers are used as diagnostic criteria to establish the ALS pathological staging. Using the source-reconstructed magnetoencephalography (MEG) approach, we demonstrated that global brain hyperconnectivity is associated with early and advanced clinical ALS stages. Using nuclear magnetic resonance (1H-NMR) and high resolution mass spectrometry (HRMS) spectroscopy, here we studied the metabolomic profile of ALS patients’ sera characterized by different stages of disease progression—namely early and advanced. Multivariate statistical analysis of the data integrated with the network analysis indicates that metabolites related to energy deficit, abnormal concentrations of neurotoxic metabolites and metabolites related to neurotransmitter production are pathognomonic of ALS in the advanced stage. Furthermore, analysis of the lipidomic profile indicates that advanced ALS patients report significant alteration of phosphocholine (PCs), lysophosphatidylcholine (LPCs), and sphingomyelin (SMs) metabolism, consistent with the exigency of lipid remodeling to repair advanced neuronal degeneration and inflammatio

    Proteomics and Food Analysis: Principles, Techniques, and Applications

    Get PDF
    This book, Proteomics and Food Analysis: Principles, Techniques, and Applications, edited by Dr. Mónica Carrera and published by MDPI, is an excellent collection of a wide range of proteomics approaches applied in food analysis
    corecore