5,844 research outputs found

    Galois lattice theory for probabilistic visual landmarks

    Get PDF
    This paper presents an original application of the Galois lattice theory, the visual landmark selection for topological localization of an autonomous mobile robot, equipped with a color camera. First, visual landmarks have to be selected in order to characterize a structural environment. Second, such landmarks have to be detected and updated for localization. These landmarks are combinations of attributes, and the selection process is done through a Galois lattice. This paper exposes the landmark selection process and focuses on probabilistic landmarks, which give the robot thorough information on how to locate itself. As a result, landmarks are no longer binary, but probabilistic. The full process of using such landmarks is described in this paper and validated through a robotics experiment

    Benchmarking Particle Filter Algorithms for Efficient Velodyne-Based Vehicle Localization

    Get PDF
    Keeping a vehicle well-localized within a prebuilt-map is at the core of any autonomous vehicle navigation system. In this work, we show that both standard SIR sampling and rejection-based optimal sampling are suitable for efficient (10 to 20 ms) real-time pose tracking without feature detection that is using raw point clouds from a 3D LiDAR. Motivated by the large amount of information captured by these sensors, we perform a systematic statistical analysis of how many points are actually required to reach an optimal ratio between efficiency and positioning accuracy. Furthermore, initialization from adverse conditions, e.g., poor GPS signal in urban canyons, we also identify the optimal particle filter settings required to ensure convergence. Our findings include that a decimation factor between 100 and 200 on incoming point clouds provides a large savings in computational cost with a negligible loss in localization accuracy for a VLP-16 scanner. Furthermore, an initial density of ∼2 particles/m 2 is required to achieve 100% convergence success for large-scale (∼100,000 m 2 ), outdoor global localization without any additional hint from GPS or magnetic field sensors. All implementations have been released as open-source software

    A Robust Localization System for Inspection Robots in Sewer Networks †

    Get PDF
    Sewers represent a very important infrastructure of cities whose state should be monitored periodically. However, the length of such infrastructure prevents sensor networks from being applicable. In this paper, we present a mobile platform (SIAR) designed to inspect the sewer network. It is capable of sensing gas concentrations and detecting failures in the network such as cracks and holes in the floor and walls or zones were the water is not flowing. These alarms should be precisely geo-localized to allow the operators performing the required correcting measures. To this end, this paper presents a robust localization system for global pose estimation on sewers. It makes use of prior information of the sewer network, including its topology, the different cross sections traversed and the position of some elements such as manholes. The system is based on a Monte Carlo Localization system that fuses wheel and RGB-D odometry for the prediction stage. The update step takes into account the sewer network topology for discarding wrong hypotheses. Additionally, the localization is further refined with novel updating steps proposed in this paper which are activated whenever a discrete element in the sewer network is detected or the relative orientation of the robot over the sewer gallery could be estimated. Each part of the system has been validated with real data obtained from the sewers of Barcelona. The whole system is able to obtain median localization errors in the order of one meter in all cases. Finally, the paper also includes comparisons with state-of-the-art Simultaneous Localization and Mapping (SLAM) systems that demonstrate the convenience of the approach.Unión Europea ECHORD ++ 601116Ministerio de Ciencia, Innovación y Universidades de España RTI2018-100847-B-C2

    Topological visual localization using decentralized galois lattices

    Get PDF
    This paper presents a new decentralized method for selecting visual landmarks in a structured environment. Different images, issued from the different places, are analyzed, and primitives are extracted to determine whether or not features are present in the images. Subsequently, landmarks are selected as a combination of these features with a mathematical formalism called Galois - or concept - lattices. The main drawback of the general approach is the exponential complexity of lattice building algorithms. A decentralized approach is therefore defined and detailed here: it leads to smaller lattices, and thus to better performance as well as an improved legibility
    corecore