19,336 research outputs found

    Supervised Learning with Quantum Measurements

    Full text link
    This paper reports a novel method for supervised machine learning based on the mathematical formalism that supports quantum mechanics. The method uses projective quantum measurement as a way of building a prediction function. Specifically, the relationship between input and output variables is represented as the state of a bipartite quantum system. The state is estimated from training samples through an averaging process that produces a density matrix. Prediction of the label for a new sample is made by performing a projective measurement on the bipartite system with an operator, prepared from the new input sample, and applying a partial trace to obtain the state of the subsystem representing the output. The method can be seen as a generalization of Bayesian inference classification and as a type of kernel-based learning method. One remarkable characteristic of the method is that it does not require learning any parameters through optimization. We illustrate the method with different 2-D classification benchmark problems and different quantum information encodings.Comment: Supplementary material integrated into main text. Typos correcte

    Quantum machine learning with adaptive linear optics

    Get PDF
    We study supervised learning algorithms in which a quantum device is used to perform a computational subroutine - either for prediction via probability estimation, or to compute a kernel via estimation of quantum states overlap. We design implementations of these quantum subroutines using Boson Sampling architectures in linear optics, supplemented by adaptive measurements. We then challenge these quantum algorithms by deriving classical simulation algorithms for the tasks of output probability estimation and overlap estimation. We obtain different classical simulability regimes for these two computational tasks in terms of the number of adaptive measurements and input photons. In both cases, our results set explicit limits to the range of parameters for which a quantum advantage can be envisaged with adaptive linear optics compared to classical machine learning algorithms: we show that the number of input photons and the number of adaptive measurements cannot be simultaneously small compared to the number of modes. Interestingly, our analysis leaves open the possibility of a near-term quantum advantage with a single adaptive measurement.Comment: 16 + 5 pages, presented at AQIS2020, accepted in Quantu

    Scalable Neural Network Decoders for Higher Dimensional Quantum Codes

    Get PDF
    Machine learning has the potential to become an important tool in quantum error correction as it allows the decoder to adapt to the error distribution of a quantum chip. An additional motivation for using neural networks is the fact that they can be evaluated by dedicated hardware which is very fast and consumes little power. Machine learning has been previously applied to decode the surface code. However, these approaches are not scalable as the training has to be redone for every system size which becomes increasingly difficult. In this work the existence of local decoders for higher dimensional codes leads us to use a low-depth convolutional neural network to locally assign a likelihood of error on each qubit. For noiseless syndrome measurements, numerical simulations show that the decoder has a threshold of around 7.1%7.1\% when applied to the 4D toric code. When the syndrome measurements are noisy, the decoder performs better for larger code sizes when the error probability is low. We also give theoretical and numerical analysis to show how a convolutional neural network is different from the 1-nearest neighbor algorithm, which is a baseline machine learning method
    corecore