157 research outputs found

    비침습적 뇌파 신호를 이용한 응급환자의 생체반응 모니터링 기법

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 협동과정 바이오엔지니어링전공, 2021. 2. 김희찬.뇌파는 대뇌피질이나 두피의 전극을 통해서 뇌의 전기적 신호를 기록한 것을 의미한다. 뇌 기능 관찰을 위한 진단도구로써 뇌파는 뇌전증이나 치매 진단 등의 목적으로 활용되고 있다. 본 논문에서는 비침습적 뇌파를 이용하여 응급환자의 주요 생리학적 지표를 모니터링하는 기술을 개발하였다. 처음 두 연구에서 심폐소생술의 효과를 평가하기 위한 심정지 돼지실험모델을 고안하였다. 현재의 심폐소생술 지침은 체순환 평가를 위해 기도삽관을 통한 호기말 이산화탄소 분압의 측정을 권고한다. 하지만, 정확한 기도삽관이 특히 병원 밖 상황에서 어려울 수 있다. 따라서, 간편히 측정할 수 있고 소생 환자의 신경학적 예후를 진단하는데 사용되는 뇌파를 이용한 예측 기술이 심폐소생술 품질평가지표의 대안으로 제안되었다. 첫 번째 실험에서는 고품질과 저품질 기본심폐소생술을 10회 반복하면서 측정된 뇌파를 분석하였다. 심폐소생술의 품질에 따른 뇌파의 변화를 이용하여 체순환 평가를 위한 EEG-based Brain Resuscitation Index (EBRI) 모델을 도출하였다. EBRI 모델에서 획득한 호기말 이산화탄소 분압 예측치는 실제 값과 양의 상관관계를 보이며, 병원 밖 상황에서의 활용 가능성을 보였다. 두 번째 실험에서는 두 가지 심폐소생술(기본심폐소생술, 전문심폐소생술)이 수행되었다. 제세동 직전에 수집된 뇌파는 심폐소생술 도중 경동맥혈류의 회복률과 함께 분석되었다. 심폐소생술 도중 경동맥혈류의 회복률을 반영하는 뇌파 변수를 규명한 후, 이를 이용하여 높은 회복률(30% 이상)과 낮은 회복률(30% 미만)을 구분하는 기계학습 기반 이진분류모델을 도출하였다. 서포트 벡터 머신 기반의 예측모델이 0.853의 정확도와 0.909의 곡선하면적을 보이며 가장 우수한 성능을 보였다. 이러한 예측모델은 심정지 환자의 뇌 소생을 향상시켜 빠른 뇌 기능 회복을 가능하게 할 것으로 기대된다. 세 번째 연구에서 비침습적 뇌파를 이용하여 두개내압을 예측하는 모델을 개발하기 위한 외상성 뇌손상 돼지실험모델이 고안되었다. 외상성 뇌손상은 물리적 충격에 의해 정상적인 뇌 기능이 중단된 상태를 의미하며, 이 때의 두개내압 상승과 관류저하가 뇌파에 영향을 끼칠 수 있다. 따라서, 우리는 뇌파 기반 두개내압 예측모델을 개발하였다. 폴리카테터로 실험동물의 두개내압을 변경하면서 뇌파를 획득하였다. 두개내압의 정상구간(25 mmHg 미만)과 위험구간(25 mmHg 이상)을 유의미하게 구분하는 뇌파 변수를 규명한 후 기계학습 기반 이진분류모델을 도출하였다. 다층 퍼셉트론 기반의 예측모델이 0.686의 정확도와 0.754의 곡선하면적을 보이며 가장 우수한 성능을 보였다. 또다른 비침습 데이터인 심박수 정보와 함께 사용하였을 때 정확도와 곡선하면적은 각각 0.760과 0.834로 향상되었다. 제안된 예측모델은 응급상황에서 비침습적으로 두개내압을 관찰하여 정상 수준의 두개내압을 유지하는데 도움을 줄 것으로 기대된다. 본 논문은 응급환자의 주요 생리학적 지표를 비침습적 뇌파를 이용하여 관찰하는 예측모델을 제안하고 성능을 검증하였다. 본 연구에서는 뇌파를 이용하여 즉각적인 호기말 이산화탄소 분압, 경동맥혈류, 두개내압을 추정하기 위한 예측모델을 수립하였다. 하지만, 뇌파 데이터는 장기간의 신경학적, 기능적 회복과 함께 평가되어야 한다. 본 논문에서 개발한 예측모델의 성능과 적용 가능성은 향후 다양한 임상연구를 통해 cerebral performance category와 modified Rankin scale 등의 신경학적 평가지표와 함께 분석, 개선되어야 할 것이다.Electroencephalogram (EEG) is a recording of the electrical activity of the brain, measured using electrodes attached to the cerebrum cortex or the scalp. As a diagnostic tool for brain disorders, EEG has been widely used for clinical purposes such as epilepsy- and dementia diagnosis. This study develops an EEG-based noninvasive critical care monitoring method for emergency patients. In the first two studies, ventricular fibrillation swine models were designed to develop EEG-based monitoring methods for evaluating the effectiveness of cardiopulmonary resuscitation (CPR). The CPR guidelines recommend measuring end-tidal carbon dioxide (ETCO2) via endotracheal intubation to assess systemic circulation. However, accurate insertion of the endotracheal tube might be difficult in an out-of-hospital setting (OOHS). Therefore, an easily measurable EEG, which has been used to predict resuscitated patients neurologic prognosis, was suggested as a surrogate indicator for CPR feedback. In the first experimental setup, the high- and low quality CPRs were altered 10 times repeatedly, and the EEG parameters were analyzed. Linear regression of an EEG-based brain resuscitation index (EBRI) was used to estimate ETCO2 levels as a novel feedback indicator of systemic circulation during CPR. A positive correlation was found between the EBRI and the real ETCO2, which indicates the feasibility of EBRI in OOHSs. In the second experimental setup, two types of CPR mode were performed: basic life support and advanced cardiovascular life support. EEG signals that were measured between chest compressions and defibrillation shocks were analyzed to monitor the cerebral circulation with respect to the recovery of carotid blood flow (CaBF) during CPR. Significant EEG parameters were identified to represent the CaBF recovery, and machine learning (ML)-based classification models were established to differentiate between the higher (≥ 30%) and lower (< 30%) CaBF recovery. The prediction model based on the support vector machine (SVM) showed the best performance, with an accuracy of 0.853 and an area under the curve (AUC) of 0.909. The proposed models are expected to guide better cerebral resuscitation and enable early recovery of brain function. In the third study, a swine model of traumatic brain injury (TBI) was designed to develop an EEG-based prediction model of an elevated intracranial pressure (ICP). TBI is defined as the disruption of normal brain function due to physical impact. This can increase ICP, and the resulting hypoperfusion can affect the cerebral electrical activity. Thus, we developed EEG-based prediction models to monitor ICP levels. During the experiments, EEG was measured while the ICP was adjusted with the Foley balloon catheter. Significant EEG parameters were determined to differentiate between the normal (< 25 mmHg) and dangerous (≥ 25 mmHg) ICP levels and ML-based binary classifiers were established to distinguish between these two groups. The multilayer perceptron model showed the best performance with an accuracy of 0.686 and an AUC of 0.754, which were improved to 0.760 and 0.834, respectively, when a noninvasive heart rate was also used as an input. The proposed prediction models are expected to instantly treat an elevated ICP (≥ 25 mmHg) in emergency settings. This study presents a new EEG-based noninvasive monitoring method of the physiologic parameters of emergency patients, especially in an OOHS, and evaluates the performance of the proposed models. In this study, EEG was analyzed to predict immediate ETCO2, CaBF, and ICP. The prediction models demonstrate that a noninvasive EEG can yield clinically important predictive outcomes. Eventually, the EEG parameters should be investigated with regard to the long-term neurological and functional outcomes. Further clinical trials are warranted to improve and evaluate the feasibility of the proposed method with respect to the neurological evaluation scores, such as the cerebral performance category and modified Rankin scale.Abstract i Contents iv List of Tables viii List of Figures x List of Abbreviations xii Chapter 1 General Introduction 1 1.1 Electroencephalogram 1 1.2 Clinical use of spontaneous EEG 5 1.3 EEG and cerebral hemodynamics 7 1.4 EEG use in emergency settings 9 1.5 Noninvasive CPR assessment 10 1.6 Noninvasive traumatic brain injury assessment 16 1.7 Thesis objectives 21 Chapter 2 EEG-based Brain Resuscitation Index for Monitoring Systemic Circulation During CPR 23 2.1 Introduction 23 2.2 Methods 25 2.2.1 Ethical statement 25 2.2.2 Study design and setting 25 2.2.3 Experimental animals and housing 27 2.2.4 Surgical preparation and hemodynamic measurements 27 2.2.5 EEG measurement 29 2.2.6 Data analysis 32 2.2.7 EBRI calculation 33 2.2.8 Delta-EBRI calculation 34 2.3 Results 36 2.3.1 Hemodynamic parameters 36 2.3.2 Changes in EEG parameters 37 2.3.3 EBRI calculation 39 2.3.4 Delta-EBRI calculation 41 2.4 Discussion 42 2.4.1 Accomplishment 42 2.4.2 Limitations 45 2.5 Conclusion 46 Chapter 3 EEG-based Prediction Model of the Recovery of Carotid Blood Flow for Monitoring Cerebral Circulation During CPR 47 3.1 Introduction 47 3.2 Methods 50 3.2.1 Ethical statement 50 3.2.2 Study design and setting 50 3.2.3 Experimental animals and housing 52 3.2.4 Surgical preparation and hemodynamic measurements 54 3.2.5 EEG measurement 55 3.2.6 Data processing 57 3.2.7 Data analysis 58 3.2.8 Development of machine-learning based prediction model 59 3.3 Results 63 3.3.1 Results of CPR process 63 3.3.2 EEG changes with the recovery of CaBF 66 3.3.3 Changes in EEG parameters depending on four CaBF groups 68 3.3.4 Changes in EEG parameters depending on two CaBF groups 69 3.3.5 EEG parameters for prediction models 70 3.3.6 Performances of prediction models 73 3.4 Discussion 76 3.4.1 Accomplishment 76 3.4.2 Limitations 78 3.5 Conclusion 80 Chapter 4 EEG-based Prediction Model of an Increased Intra-Cranial Pressure for TBI patients 81 4.1 Introduction 81 4.2 Methods 83 4.2.1 Ethical statement 83 4.2.2 Study design and setting 83 4.2.3 Experimental animals and housing 85 4.2.4 Surgical preparation and hemodynamic measurements 86 4.2.5 EEG measurement 88 4.2.6 Data processing 90 4.2.7 Data analysis 90 4.2.8 Development of machine-learning based prediction model 91 4.3 Results 92 4.3.1 Hemodynamic changes during brain injury phase 92 4.3.2 EEG changes with an increase of ICP 93 4.3.3 EEG parameters for prediction models 94 4.3.4 Performances for prediction models 95 4.4 Discussion 100 4.4.1 Accomplishment 100 4.4.2 Limitations 104 4.5 Conclusion 104 Chapter 5 Summary and Future works 105 5.1 Thesis summary and contributions 105 5.2 Future direction 108 Bibilography 113 Abstract in Korean 135Docto

    Radiomic data mining and machine learning on preoperative pituitary adenoma MRI

    Get PDF
    Pituitary adenomas are among the most frequent intracranial tumors, accounting for the majority of sellar/suprasellar masses in adults. MRI is the preferred imaging modality for detecting pituitary adenomas. Radiomics represents the conversion of digital medical images into mineable high-dimensional data. This process is motivated by the concept that biomedical images contain information that reflects underlying pathophysiology and that these relationships can be revealed via quantitative image analyses. The aim of this thesis is to apply machine learning algorithms on parameters obtained by texture analysis on MRI images in order to distinguish functional from non-functional pituitary macroadenomas, to predict their ki-67 proliferation index class, and to predict pituitary macroadenoma surgical consistency prior to an endoscopic endonasal procedure

    Tissue recognition for contrast enhanced ultrasound videos

    Get PDF

    Neuro-critical multimodal Edge-AI monitoring algorithm and IoT system design and development

    Get PDF
    In recent years, with the continuous development of neurocritical medicine, the success rate of treatment of patients with traumatic brain injury (TBI) has continued to increase, and the prognosis has also improved. TBI patients' condition is usually very complicated, and after treatment, patients often need a more extended time to recover. The degree of recovery is also related to prognosis. However, as a young discipline, neurocritical medicine still has many shortcomings. Especially in most hospitals, the condition of Neuro-intensive Care Unit (NICU) is uneven, the equipment has limited functionality, and there is no unified data specification. Most of the instruments are cumbersome and expensive, and patients often need to pay high medical expenses. Recent years have seen a rapid development of big data and artificial intelligence (AI) technology, which are advancing the medical IoT field. However, further development and a wider range of applications of these technologies are needed to achieve widespread adoption. Based on the above premises, the main contributions of this thesis are the following. First, the design and development of a multi-modal brain monitoring system including 8-channel electroencephalography (EEG) signals, dual-channel NIRS signals, and intracranial pressure (ICP) signals acquisition. Furthermore, an integrated display platform for multi-modal physiological data to display and analysis signals in real-time was designed. This thesis also introduces the use of the Qt signal and slot event processing mechanism and multi-threaded to improve the real-time performance of data processing to a higher level. In addition, multi-modal electrophysiological data storage and processing was realized on cloud server. The system also includes a custom built Django cloud server which realizes real-time transmission between server and WeChat applet. Based on WebSocket protocol, the data transmission delay is less than 10ms. The analysis platform can be equipped with deep learning models to realize the monitoring of patients with epileptic seizures and assess the level of consciousness of Disorders of Consciousness (DOC) patients. This thesis combines the standard open-source data set CHB-MIT, a clinical data set provided by Huashan Hospital, and additional data collected by the system described in this thesis. These data sets are merged to build a deep learning network model and develop related applications for automatic disease diagnosis for smart medical IoT systems. It mainly includes the use of the clinical data to analyze the characteristics of the EEG signal of DOC patients and building a CNN model to evaluate the patient's level of consciousness automatically. Also, epilepsy is a common disease in neuro-intensive care. In this regard, this thesis also analyzes the differences of various deep learning model between the CHB-MIT data set and clinical data set for epilepsy monitoring, in order to select the most appropriate model for the system being designed and developed. Finally, this thesis also verifies the AI-assisted analysis model.. The results show that the accuracy of the CNN network model based on the evaluation of consciousness disorder on the clinical data set reaches 82%. The CNN+STFT network model based on epilepsy monitoring reaches 90% of the accuracy rate in clinical data. Also, the multi-modal brain monitoring system built is fully verified. The EEG signal collected by this system has a high signal-to-noise ratio, strong anti-interference ability, and is very stable. The built brain monitoring system performs well in real-time and stability. Keywords: TBI, Neurocritical care, Multi-modal, Consciousness Assessment, seizures detection, deep learning, CNN, IoT

    Classification of dementias based on brain radiomics features

    Get PDF
    Dissertação de mestrado integrado em Engenharia InformáticaNeurodegenerative diseases impair the functioning of the brain and are characterized by alterations in the morphology of specific brain regions. Some of the main disorders include Alzheimer's, Parkinson's, and Huntington's diseases, and the number of cases increases exponentially since ageing is one of the main risk factors. Trying to identify the areas in which this type of disease appears is something that can have a very positive impact in this area of Medicine and can guarantee a more appropriate treatment or allow the improvement of the quality of life of patients. With the current technological advances, computer tools are capable of performing a structural or functional analysis of neuroimaging data from Magnetic Resonance Images(MRI). Therefore, Medical Informatics uses these techniques to create and manage medical neuroimaging data to improve the diagnosis and management of these patients. MRI is the image type used in the analysis of the brain area and points to a promising and reliable diagnostic tool since it allows high-quality images in various planes or strategies and MRI methods are fundamental diagnostic tools in clinical practice, allowing the diagnosis of pathologic processes such as stroke or brain tumours. However, structural MRI has limitations for the diagnosis of neurodegenerative disorders since it mainly identifies atrophy of brain regions. Currently, there is increased interest in informatics applications capable of monitoring and quantifying human brain imaging alterations, with potential for neurodegenerative disorders diagnosis and monitoring. One of these applications is Radiomics, which corresponds to a methodolog ythat allows the extraction of features from images of a given region of the brain. Specific quantitative metrics from MRI are acquired by this tool, and they correspond to a set of features, including texture, shape, among others. To standardize Radiomics application, specific libraries have been proposed to be used by the bioinformatics and biomedical communities, such as PyRadiomics, which corresponds to an open source Python package for extracting Radiomics of MRIs. Therefore, this dissertation was developed based on magnetic resonance images and the study of Deep Learning (DL) techniques to assist researchers and neuroradiologists in the diagnosis and prediction of neurodegenerative disease development. Two different main tasks were made: first, a segmentation, using FreeSurfer, of different regions of the brain and then, a model was build from radiomic features extracted from each part of the brain and interpreted for knowledge extraction.As doenças neurodegenerativas estão associadas ao funcionamento do cérebro e caracterizam-se pelo facto de serem altamente incapacitantes. São exemplos destas, as doenças de Alzheimer, Parkinson e Huntington, e o seu número de casos tem vindo a aumentar exponencialmente, uma vez que o envelhecimento é um dos principais factores de risco. Tentar identificar quais são as regiões cerebrais que permitem predizer o seu aparecimento e desenvolvimento é algo que, sendo possível, terá um impacto muito positivo nesta área da Medicina e poderá garantir um tratamento mais adequado, ou simplesmente melhorar a qualidade de vida dos pacientes. Com os avanços tecnológicos atuais, foram desenvolvidas ferramentas informáticas que são capazes de efetuar uma análise estrutural ou funcional de Ressonâncias Magnéticas (MRI), sendo essas ferramentas usadas para promover a melhoria e o conhecimento clínico. Deste modo, as constantes evoluções científicas têm realçado o papel da Informática Médica na neuroimagem para criar e gerenciar dados médicos, melhorando o diagnóstico destes pacientes. A MRI é o tipo de imagem utilizada na análise de regiões cerebrais e aponta para uma ferramenta de diagnóstico promissora e fiável, uma vez que permite obter imagens de alta qualidade em vários planos, permitindo assim, o diagnóstico de processos patológicos, tais como acidentes vasculares ou tumores cerebrais. Atualmente, existem inúmeras aplicações informáticas capazes de efetuar análises estruturais e funcionais do cérebro humano, pois é este o principal órgão afetado pelas doenças neurodegenerativas. Uma dessas aplicações é o Radiomics, que permite fazer a extração de features de imagens do cérebro. A biblioteca a utilizar será PyRadiomics, que corresponde a um package open source em Python para a extração de features Radiomics de imagens médicas. As features correspondem a características da imagem. Assim sendo, a presente dissertação foi desenvolvida com base em imagens de ressonância magnética e no estudo das técnicas de Deep Learning para investigar e auxiliar os médicos neurorradiologistas a diagnosticar e a prever o desenvolvimento de doenças neurodegenerativas. Foram feitas duas principais tarefas: primeiro, uma segmentação, utilizando o software FreeSurfer, de diferentes regiões do cérebro e, de seguida, foi construído um modelo a partir das features radiómicas extraídas de cada parte do cérebro que foi interpretado

    Predictive analytics framework for electronic health records with machine learning advancements : optimising hospital resources utilisation with predictive and epidemiological models

    Get PDF
    The primary aim of this thesis was to investigate the feasibility and robustness of predictive machine-learning models in the context of improving hospital resources’ utilisation with data- driven approaches and predicting hospitalisation with hospital quality assessment metrics such as length of stay. The length of stay predictions includes the validity of the proposed methodological predictive framework on each hospital’s electronic health records data source. In this thesis, we relied on electronic health records (EHRs) to drive a data-driven predictive inpatient length of stay (LOS) research framework that suits the most demanding hospital facilities for hospital resources’ utilisation context. The thesis focused on the viability of the methodological predictive length of stay approaches on dynamic and demanding healthcare facilities and hospital settings such as the intensive care units and the emergency departments. While the hospital length of stay predictions are (internal) healthcare inpatients outcomes assessment at the time of admission to discharge, the thesis also considered (external) factors outside hospital control, such as forecasting future hospitalisations from the spread of infectious communicable disease during pandemics. The internal and external splits are the thesis’ main contributions. Therefore, the thesis evaluated the public health measures during events of uncertainty (e.g. pandemics) and measured the effect of non-pharmaceutical intervention during outbreaks on future hospitalised cases. This approach is the first contribution in the literature to examine the epidemiological curves’ effect using simulation models to project the future hospitalisations on their strong potential to impact hospital beds’ availability and stress hospital workflow and workers, to the best of our knowledge. The main research commonalities between chapters are the usefulness of ensembles learning models in the context of LOS for hospital resources utilisation. The ensembles learning models anticipate better predictive performance by combining several base models to produce an optimal predictive model. These predictive models explored the internal LOS for various chronic and acute conditions using data-driven approaches to determine the most accurate and powerful predicted outcomes. This eventually helps to achieve desired outcomes for hospital professionals who are working in hospital settings

    Deep Multimodality Image-Guided System for Assisting Neurosurgery

    Get PDF
    Intrakranielle Hirntumoren gehören zu den zehn häufigsten bösartigen Krebsarten und sind für eine erhebliche Morbidität und Mortalität verantwortlich. Die größte histologische Kategorie der primären Hirntumoren sind die Gliome, die ein äußerst heterogenes Erschei-nungsbild aufweisen und radiologisch schwer von anderen Hirnläsionen zu unterscheiden sind. Die Neurochirurgie ist meist die Standardbehandlung für neu diagnostizierte Gliom-Patienten und kann von einer Strahlentherapie und einer adjuvanten Temozolomid-Chemotherapie gefolgt werden. Die Hirntumorchirurgie steht jedoch vor großen Herausforderungen, wenn es darum geht, eine maximale Tumorentfernung zu erreichen und gleichzeitig postoperative neurologische Defizite zu vermeiden. Zwei dieser neurochirurgischen Herausforderungen werden im Folgenden vorgestellt. Erstens ist die manuelle Abgrenzung des Glioms einschließlich seiner Unterregionen aufgrund seines infiltrativen Charakters und des Vorhandenseins einer heterogenen Kontrastverstärkung schwierig. Zweitens verformt das Gehirn seine Form ̶ die so genannte "Hirnverschiebung" ̶ als Reaktion auf chirurgische Manipulationen, Schwellungen durch osmotische Medikamente und Anästhesie, was den Nutzen präopera-tiver Bilddaten für die Steuerung des Eingriffs einschränkt. Bildgesteuerte Systeme bieten Ärzten einen unschätzbaren Einblick in anatomische oder pathologische Ziele auf der Grundlage moderner Bildgebungsmodalitäten wie Magnetreso-nanztomographie (MRT) und Ultraschall (US). Bei den bildgesteuerten Instrumenten handelt es sich hauptsächlich um computergestützte Systeme, die mit Hilfe von Computer-Vision-Methoden die Durchführung perioperativer chirurgischer Eingriffe erleichtern. Die Chirurgen müssen jedoch immer noch den Operationsplan aus präoperativen Bildern gedanklich mit Echtzeitinformationen zusammenführen, während sie die chirurgischen Instrumente im Körper manipulieren und die Zielerreichung überwachen. Daher war die Notwendigkeit einer Bildführung während neurochirurgischer Eingriffe schon immer ein wichtiges Anliegen der Ärzte. Ziel dieser Forschungsarbeit ist die Entwicklung eines neuartigen Systems für die peri-operative bildgeführte Neurochirurgie (IGN), nämlich DeepIGN, mit dem die erwarteten Ergebnisse der Hirntumorchirurgie erzielt werden können, wodurch die Gesamtüberle-bensrate maximiert und die postoperative neurologische Morbidität minimiert wird. Im Rahmen dieser Arbeit werden zunächst neuartige Methoden für die Kernbestandteile des DeepIGN-Systems der Hirntumor-Segmentierung im MRT und der multimodalen präope-rativen MRT zur intraoperativen US-Bildregistrierung (iUS) unter Verwendung der jüngs-ten Entwicklungen im Deep Learning vorgeschlagen. Anschließend wird die Ergebnisvor-hersage der verwendeten Deep-Learning-Netze weiter interpretiert und untersucht, indem für den Menschen verständliche, erklärbare Karten erstellt werden. Schließlich wurden Open-Source-Pakete entwickelt und in weithin anerkannte Software integriert, die für die Integration von Informationen aus Tracking-Systemen, die Bildvisualisierung und -fusion sowie die Anzeige von Echtzeit-Updates der Instrumente in Bezug auf den Patientenbe-reich zuständig ist. Die Komponenten von DeepIGN wurden im Labor validiert und in einem simulierten Operationssaal evaluiert. Für das Segmentierungsmodul erreichte DeepSeg, ein generisches entkoppeltes Deep-Learning-Framework für die automatische Abgrenzung von Gliomen in der MRT des Gehirns, eine Genauigkeit von 0,84 in Bezug auf den Würfelkoeffizienten für das Bruttotumorvolumen. Leistungsverbesserungen wurden bei der Anwendung fort-schrittlicher Deep-Learning-Ansätze wie 3D-Faltungen über alle Schichten, regionenbasier-tes Training, fliegende Datenerweiterungstechniken und Ensemble-Methoden beobachtet. Um Hirnverschiebungen zu kompensieren, wird ein automatisierter, schneller und genauer deformierbarer Ansatz, iRegNet, für die Registrierung präoperativer MRT zu iUS-Volumen als Teil des multimodalen Registrierungsmoduls vorgeschlagen. Es wurden umfangreiche Experimente mit zwei Multi-Location-Datenbanken durchgeführt: BITE und RESECT. Zwei erfahrene Neurochirurgen führten eine zusätzliche qualitative Validierung dieser Studie durch, indem sie MRT-iUS-Paare vor und nach der deformierbaren Registrierung überlagerten. Die experimentellen Ergebnisse zeigen, dass das vorgeschlagene iRegNet schnell ist und die besten Genauigkeiten erreicht. Darüber hinaus kann das vorgeschlagene iRegNet selbst bei nicht trainierten Bildern konkurrenzfähige Ergebnisse liefern, was seine Allgemeingültigkeit unter Beweis stellt und daher für die intraoperative neurochirurgische Führung von Nutzen sein kann. Für das Modul "Erklärbarkeit" wird das NeuroXAI-Framework vorgeschlagen, um das Vertrauen medizinischer Experten in die Anwendung von KI-Techniken und tiefen neuro-nalen Netzen zu erhöhen. Die NeuroXAI umfasst sieben Erklärungsmethoden, die Visuali-sierungskarten bereitstellen, um tiefe Lernmodelle transparent zu machen. Die experimen-tellen Ergebnisse zeigen, dass der vorgeschlagene XAI-Rahmen eine gute Leistung bei der Extraktion lokaler und globaler Kontexte sowie bei der Erstellung erklärbarer Salienzkar-ten erzielt, um die Vorhersage des tiefen Netzwerks zu verstehen. Darüber hinaus werden Visualisierungskarten erstellt, um den Informationsfluss in den internen Schichten des Encoder-Decoder-Netzwerks zu erkennen und den Beitrag der MRI-Modalitäten zur end-gültigen Vorhersage zu verstehen. Der Erklärungsprozess könnte medizinischen Fachleu-ten zusätzliche Informationen über die Ergebnisse der Tumorsegmentierung liefern und somit helfen zu verstehen, wie das Deep-Learning-Modell MRT-Daten erfolgreich verar-beiten kann. Außerdem wurde ein interaktives neurochirurgisches Display für die Eingriffsführung entwickelt, das die verfügbare kommerzielle Hardware wie iUS-Navigationsgeräte und Instrumentenverfolgungssysteme unterstützt. Das klinische Umfeld und die technischen Anforderungen des integrierten multimodalen DeepIGN-Systems wurden mit der Fähigkeit zur Integration von (1) präoperativen MRT-Daten und zugehörigen 3D-Volumenrekonstruktionen, (2) Echtzeit-iUS-Daten und (3) positioneller Instrumentenver-folgung geschaffen. Die Genauigkeit dieses Systems wurde anhand eines benutzerdefi-nierten Agar-Phantom-Modells getestet, und sein Einsatz in einem vorklinischen Operati-onssaal wurde simuliert. Die Ergebnisse der klinischen Simulation bestätigten, dass die Montage des Systems einfach ist, in einer klinisch akzeptablen Zeit von 15 Minuten durchgeführt werden kann und mit einer klinisch akzeptablen Genauigkeit erfolgt. In dieser Arbeit wurde ein multimodales IGN-System entwickelt, das die jüngsten Fort-schritte im Bereich des Deep Learning nutzt, um Neurochirurgen präzise zu führen und prä- und intraoperative Patientenbilddaten sowie interventionelle Geräte in das chirurgi-sche Verfahren einzubeziehen. DeepIGN wurde als Open-Source-Forschungssoftware entwickelt, um die Forschung auf diesem Gebiet zu beschleunigen, die gemeinsame Nut-zung durch mehrere Forschungsgruppen zu erleichtern und eine kontinuierliche Weiter-entwicklung durch die Gemeinschaft zu ermöglichen. Die experimentellen Ergebnisse sind sehr vielversprechend für die Anwendung von Deep-Learning-Modellen zur Unterstützung interventioneller Verfahren - ein entscheidender Schritt zur Verbesserung der chirurgi-schen Behandlung von Hirntumoren und der entsprechenden langfristigen postoperativen Ergebnisse

    Efficient Scopeformer: Towards Scalable and Rich Feature Extraction for Intracranial Hemorrhage Detection using Hybrid Convolution and Vision Transformer Networks

    Get PDF
    The field of medical imaging has seen significant advancements through the use of artificial intelligence (AI) techniques. The success of deep learning models in this area has led to the need for further research. This study aims to explore the use of various deep learning algorithms and emerging modeling techniques to improve training paradigms in medical imaging. Convolutional neural networks (CNNs) are the go-to architecture for computer vision problems, but they have limitations in mapping long-term dependencies within images. To address these limitations, the study explores the use of techniques such as global average pooling and self-attention mechanisms. Additionally, the study investigates the performance of vision transformers (ViTs), which have shown potential for outperforming CNNs in image classification tasks. The Scopeformer, a new end-to-end architecture that combines the unique strengths of both CNNs and ViTs, is proposed to improve upon their individual performance. The study contributes to the conversation about effective approaches for tackling challenging computer vision tasks in medical imaging
    corecore