1,740 research outputs found

    A PREDICTIVE USER BEHAVIOUR ANALYTIC MODEL FOR INSIDER THREATS IN CYBERSPACE

    Get PDF
    Insider threat in cyberspace is a recurring problem since the user activities in a cyber network are often unpredictable. Most existing solutions are not flexible and adaptable to detect sudden change in user’s behaviour in streaming data, which led to a high false alarm rates and low detection rates. In this study, a model that is capable of adapting to the changing pattern in structured cyberspace data streams in order to detect malicious insider activities in cyberspace was proposed. The Computer Emergency Response Team (CERT) dataset was used as the data source in this study. Extracted features from the dataset were normalized using Min-Max normalization. Standard scaler techniques and mutual information gain technique were used to determine the best features for classification. A hybrid detection model was formulated using the synergism of Convolutional Neural Network (CNN) and Gated Recurrent Unit (GRU) models. Model simulation was performed using python programming language. Performance evaluation was carried out by assessing and comparing the performance of the proposed model with a selected existing model using accuracy, precision and sensitivity as performance metrics. The result of the simulation showed that the developed model has an increase of 1.48% of detection accuracy, 4.21% of precision and 1.25% sensitivity over the existing model. This indicated that the developed hybrid approach was able to learn from sequences of user actions in a time and frequency domain and improves the detection rate of insider threats in cyberspace

    The Big Picture: Using Desktop Imagery for Detection of Insider Threats

    Get PDF
    The insider threat is one of the most difficult problems in information security. Prior research addresses its detection by using machine learning techniques to profile user behavior. User behavior is represented as low level system events, which do not provide sufficient contextual information about the user\u27s intentions, and lead to high error rates. Our system uses video of a user\u27s sessions as the representation of their behavior, and detects moments during which they perform sensitive tasks. Analysis of the video is accomplished using OCR, scene detection algorithms, and basic text classification. The system outputs the results to a web interface, and our results show that using desktop imagery is a viable alternative to using system calls for insider threat detection

    Adaptive One-Class Ensemble-based Anomaly Detection: An Application to Insider Threats

    Get PDF
    The malicious insider threat is getting increased concern by organisations, due to the continuously growing number of insider incidents. The absence of previously logged insider threats shapes the insider threat detection mechanism into a one-class anomaly detection approach. A common shortcoming in the existing data mining approaches to detect insider threats is the high number of False Positives (FP) (i.e. normal behaviour predicted as anomalous). To address this shortcoming, in this paper, we propose an anomaly detection framework with two components: one-class modelling component, and progressive update component. To allow the detection of anomalous instances that have a high resemblance with normal instances, the one-class modelling component applies class decomposition on normal class data to create k clusters, then trains an ensemble of k base anomaly detection algorithms (One-class Support Vector Machine or Isolation Forest), having the data in each cluster used to construct one of the k base models. The progressive update component updates each of the k models with sequentially acquired FP chunks; segments of a predetermined capacity of FPs. It includes an oversampling method to generate artificial samples for FPs per chunk, then retrains each model and adapts the decision boundary, with the aim to reduce the number of future FPs. A variety of experiments is carried out, on synthetic data sets generated at Carnegie Mellon University, to test the effectiveness of the proposed framework and its components. The results show that the proposed framework reports the highest F1 measure and less number of FPs compared to the base algorithms, as well as it attains to detect all the insider threats in the data sets

    Data Stream Clustering for Real-Time Anomaly Detection: An Application to Insider Threats

    Get PDF
    Insider threat detection is an emergent concern for academia, industries, and governments due to the growing number of insider incidents in recent years. The continuous streaming of unbounded data coming from various sources in an organisation, typically in a high velocity, leads to a typical Big Data computational problem. The malicious insider threat refers to anomalous behaviour(s) (outliers) that deviate from the normal baseline of a data stream. The absence of previously logged activities executed by users shapes the insider threat detection mechanism into an unsupervised anomaly detection approach over a data stream. A common shortcoming in the existing data mining approaches to detect insider threats is the high number of false alarms/positives (FPs). To handle the Big Data issue and to address the shortcoming, we propose a streaming anomaly detection approach, namely Ensemble of Random subspace Anomaly detectors In Data Streams (E-RAIDS), for insider threat detection. E-RAIDS learns an ensemble of p established outlier detection techniques [Micro-cluster-based Continuous Outlier Detection (MCOD) or Anytime Outlier Detection (AnyOut)] which employ clustering over continuous data streams. Each model of the p models learns from a random feature subspace to detect local outliers, which might not be detected over the whole feature space. E-RAIDS introduces an aggregate component that combines the results from the p feature subspaces, in order to confirm whether to generate an alarm at each window iteration. The merit of E-RAIDS is that it defines a survival factor and a vote factor to address the shortcoming of high number of FPs. Experiments on E-RAIDS-MCOD and E-RAIDS-AnyOut are carried out, on synthetic data sets including malicious insider threat scenarios generated at Carnegie Mellon University, to test the effectiveness of voting feature subspaces, and the capability to detect (more than one)-behaviour-all-threat in real-time. The results show that E-RAIDS-MCOD reports the highest F1 measure and less number of false alarm = 0 compared to E-RAIDS-AnyOut, as well as it attains to detect approximately all the insider threats in real-time

    Caught in the act of an insider attack: detection and assessment of insider threat

    Get PDF
    The greatest asset that any organisation has are its people, but they may also be the greatest threat. Those who are within the organisation may have authorised access to vast amounts of sensitive company records that are essential for maintaining competitiveness and market position, and knowledge of information services and procedures that are crucial for daily operations. In many cases, those who have such access do indeed require it in order to conduct their expected workload. However, should an individual choose to act against the organisation, then with their privileged access and their extensive knowledge, they are well positioned to cause serious damage. Insider threat is becoming a serious and increasing concern for many organisations, with those who have fallen victim to such attacks suffering significant damages including financial and reputational. It is clear then, that there is a desperate need for more effective tools for detecting the presence of insider threats and analyzing the potential of threats before they escalate. We propose Corporate Insider Threat Detection (CITD), an anomaly detection system that is the result of a multi-disciplinary research project that incorporates technical and behavioural activities to assess the threat posed by individuals. The system identifies user and role-based profiles, and measures how users deviate from their observed behaviours to assess the potential threat that a series of activities may pose. In this paper, we present an overview of the system and describe the concept of operations and practicalities of deploying the system. We show how the system can be utilised for unsupervised detection, and also how the human analyst can engage to provide an active learning feedback loop. By adopting an accept or reject scheme, the analyst is capable of refining the underlying detection model to better support their decisionmaking process and significant reduce the false positive rate

    Dynamic Fraud Detection via Sequential Modeling

    Get PDF
    The impacts of information revolution are omnipresent from life to work. The web services have signicantly changed our living styles in daily life, such as Facebook for communication and Wikipedia for knowledge acquirement. Besides, varieties of information systems, such as data management system and management information system, make us work more eciently. However, it is usually a double-edged sword. With the popularity of web services, relevant security issues are arising, such as fake news on Facebook and vandalism on Wikipedia, which denitely impose severe security threats to OSNs and their legitimate participants. Likewise, oce automation incurs another challenging security issue, insider threat, which may involve the theft of condential information, the theft of intellectual property, or the sabotage of computer systems. A recent survey says that 27% of all cyber crime incidents are suspected to be committed by the insiders. As a result, how to ag out these malicious web users or insiders is urgent. The fast development of machine learning (ML) techniques oers an unprecedented opportunity to build some ML models that can assist humans to detect the individuals who conduct misbehaviors automatically. However, unlike some static outlier detection scenarios where ML models have achieved promising performance, the malicious behaviors conducted by humans are often dynamic. Such dynamic behaviors lead to various unique challenges of dynamic fraud detection: Unavailability of sucient labeled data - traditional machine learning approaches usually require a balanced training dataset consisting of normal and abnormal samples. In practice, however, there are far fewer abnormal labeled samples than normal ones. Lack of high quality labels - the labeled training records often have the time gap between the time that fraudulent users commit fraudulent actions and the time that they are suspended by the platforms. Time-evolving nature - users are always changing their behaviors over time. To address the aforementioned challenges, in this dissertation, we conduct a systematic study for dynamic fraud detection, with a focus on: (1) Unavailability of labeled data: we present (a) a few-shot learning framework to handle the extremely imbalanced dataset that abnormal samples are far fewer than the normal ones and (b) a one-class fraud detection method using a complementary GAN (Generative Adversarial Network) to adaptively generate potential abnormal samples; (2) Lack of high-quality labels: we develop a neural survival analysis model for fraud early detection to deal with the time gap; (3) Time-evolving nature: we propose (a) a hierarchical neural temporal point process model and (b) a dynamic Dirichlet marked Hawkes process model for fraud detection

    Real-time big data processing for anomaly detection : a survey

    Get PDF
    The advent of connected devices and omnipresence of Internet have paved way for intruders to attack networks, which leads to cyber-attack, financial loss, information theft in healthcare, and cyber war. Hence, network security analytics has become an important area of concern and has gained intensive attention among researchers, off late, specifically in the domain of anomaly detection in network, which is considered crucial for network security. However, preliminary investigations have revealed that the existing approaches to detect anomalies in network are not effective enough, particularly to detect them in real time. The reason for the inefficacy of current approaches is mainly due the amassment of massive volumes of data though the connected devices. Therefore, it is crucial to propose a framework that effectively handles real time big data processing and detect anomalies in networks. In this regard, this paper attempts to address the issue of detecting anomalies in real time. Respectively, this paper has surveyed the state-of-the-art real-time big data processing technologies related to anomaly detection and the vital characteristics of associated machine learning algorithms. This paper begins with the explanation of essential contexts and taxonomy of real-time big data processing, anomalous detection, and machine learning algorithms, followed by the review of big data processing technologies. Finally, the identified research challenges of real-time big data processing in anomaly detection are discussed. © 2018 Elsevier Lt
    • …
    corecore