1,799 research outputs found

    Biomedical word sense disambiguation with word embeddings

    Get PDF
    There is a growing need for automatic extraction of information and knowledge from the increasing amount of biomedical and clinical data produced, namely in textual form. Natural language processing comes in this direction, helping in tasks such as information extraction and information retrieval. Word sense disambiguation is an important part of this process, being responsible for assigning the proper concept to an ambiguous term. In this paper, we present results from machine learning and knowledge-based algorithms applied to biomedical word sense disambiguation. For the supervised machine learning algorithms we used word embeddings, calculated from the full MEDLINE literature database, as global features and compare the results to the use of local unigram and bigram features. For the knowledge-based method we represented the textual definitions of biomedical concepts from the UMLS database as word embedding vectors, and combined this with concept associations derived from the MeSH term co-occurrences. Both the machine learning and the knowledge-based results indicate that word embeddings are informative and improve the biomedical word disambiguation accuracy. Applied to the reference MSH WSD data set, our knowledge-based approach achieves 85.1% disambiguation accuracy, which is higher than some previously proposed approaches that do not use machine-learning strategies.publishe

    BIOMEDICAL WORD SENSE DISAMBIGUATION WITH NEURAL WORD AND CONCEPT EMBEDDINGS

    Get PDF
    Addressing ambiguity issues is an important step in natural language processing (NLP) pipelines designed for information extraction and knowledge discovery. This problem is also common in biomedicine where NLP applications have become indispensable to exploit latent information from biomedical literature and clinical narratives from electronic medical records. In this thesis, we propose an ensemble model that employs recent advances in neural word embeddings along with knowledge based approaches to build a biomedical word sense disambiguation (WSD) system. Specifically, our system identities the correct sense from a given set of candidates for each ambiguous word when presented in its context (surrounding words). We use the MSH WSD dataset, a well known public dataset consisting of 203 ambiguous terms each with nearly 200 different instances and an average of two candidate senses represented by concepts in the unified medical language system (UMLS). We employ a popular biomedical concept, Our linear time (in terms of number of senses and context length) unsupervised and knowledge based approach improves over the state-of-the-art methods by over 3% in accuracy. A more expensive approach based on the k-nearest neighbor framework improves over prior best results by 5% in accuracy. Our results demonstrate that recent advances in neural dense word vector representations offer excellent potential for solving biomedical WSD

    Word Sense Disambiguation for clinical abbreviations

    Get PDF
    Abbreviations are extensively used in electronic health records (EHR) of patients as well as medical documentation, reaching 30-50% of the words in clinical narrative. There are more than 197,000 unique medical abbreviations found in the clinical text and their meanings vary depending on the context in which they are used. Since data in electronic health records could be shareable across health information systems (hospitals, primary care centers, etc.) as well as others such as insurance companies information systems, it is essential determining the correct meaning of the abbreviations to avoid misunderstandings. Clinical abbreviations have specific characteristic that do not follow any standard rules for creating them. This makes it complicated to find said abbreviations and corresponding meanings. Furthermore, there is an added difficulty to working with clinical data due to privacy reasons, since it is essential to have them in order to develop and test algorithms. Word sense disambiguation (WSD) is an essential task in natural language processing (NLP) applications such as information extraction, chatbots and summarization systems among others. WSD aims to identify the correct meaning of the ambiguous word which has more than one meaning. Disambiguating clinical abbreviations is a type of lexical sample WSD task. Previous research works adopted supervised, unsupervised and Knowledge-based (KB) approaches to disambiguate clinical abbreviations. This thesis aims to propose a classification model that apart from disambiguating well known abbreviations also disambiguates rare and unseen abbreviations using the most recent deep neural network architectures for language modeling. In clinical abbreviation disambiguation several resources and disambiguation models were encountered. Different classification approaches used to disambiguate the clinical abbreviations were investigated in this thesis. Considering that computers do not directly understand texts, different data representations were implemented to capture the meaning of the words. Since it is also necessary to measure the performance of algorithms, the evaluation measurements used are discussed. As the different solutions proposed to clinical WSD we have explored static word embeddings data representation on 13 English clinical abbreviations of the UMN data set (from University of Minnesota) by testing traditional supervised machine learning algorithms separately for each abbreviation. Moreover, we have utilized a transformer-base pretrained model that was fine-tuned as a multi-classification classifier for the whole data set (75 abbreviations of the UMN data set). The aim of implementing just one multi-class classifier is to predict rare and unseen abbreviations that are most common in clinical narrative. Additionally, other experiments were conducted for a different type of abbreviations (scientific abbreviations and acronyms) by defining a hybrid approach composed of supervised and knowledge-based approaches. Most previous works tend to build a separated classifier for each clinical abbreviation, tending to leverage different data resources to overcome the data acquisition bottleneck. However, those models were restricted to disambiguate terms that have been seen in trained data. Meanwhile, based on our results, transfer learning by fine-tuning a transformer-based model could predict rare and unseen abbreviations. A remaining challenge for future work is to improve the model to automate the disambiguation of clinical abbreviations on run-time systems by implementing self-supervised learning models.Las abreviaturas se utilizan ampliamente en las historias clínicas electrónicas de los pacientes y en mucha documentación médica, llegando a ser un 30-50% de las palabras empleadas en narrativa clínica. Existen más de 197.000 abreviaturas únicas usadas en textos clínicos siendo términos altamente ambiguos El significado de las abreviaturas varía en función del contexto en el que se utilicen. Dado que los datos de las historias clínicas electrónicas pueden compartirse entre servicios, hospitales, centros de atención primaria así como otras organizaciones como por ejemplo, las compañías de seguros es fundamental determinar el significado correcto de las abreviaturas para evitar además eventos adversos relacionados con la seguridad del paciente. Nuevas abreviaturas clínicas aparecen constantemente y tienen la característica específica de que no siguen ningún estándar para su creación. Esto hace que sea muy difícil disponer de un recurso con todas las abreviaturas y todos sus significados. A todo esto hay que añadir la dificultad para trabajar con datos clínicos por cuestiones de privacidad cuando es esencial disponer de ellos para poder desarrollar algoritmos para su tratamiento. La desambiguación del sentido de las palabras (WSD, en inglés) es una tarea esencial en tareas de procesamiento del lenguaje natural (PLN) como extracción de información, chatbots o generadores de resúmenes, entre otros. WSD tiene como objetivo identificar el significado correcto de una palabra ambigua (que tiene más de un significado). Esta tarea se ha abordado previamente utilizando tanto enfoques supervisados, no supervisados así como basados en conocimiento. Esta tesis tiene como objetivo definir un modelo de clasificación que además de desambiguar abreviaturas conocidas desambigüe también abreviaturas menos frecuentes que no han aparecido previamente en los conjuntos de entrenaminto utilizando las arquitecturas de redes neuronales profundas más recientes relacionadas ocn los modelos del lenguaje. En la desambiguación de abreviaturas clínicas se emplean diversos recursos y modelos de desambiguación. Se han investigado los diferentes enfoques de clasificación utilizados para desambiguar las abreviaturas clínicas. Dado que un ordenador no comprende directamente los textos, se han implementado diferentes representaciones de textos para capturar el significado de las palabras. Puesto que también es necesario medir el desempeño de cualquier algoritmo, se describen también las medidas de evaluación utilizadas. La mayoría de los trabajos previos se han basado en la construcción de un clasificador separado para cada abreviatura clínica. De este modo, tienden a aprovechar diferentes recursos de datos para superar el cuello de botella de la adquisición de datos. Sin embargo, estos modelos se limitaban a desambiguar con los datos para los que el sistema había sido entrenado. Se han explorado además representaciones basadas vectores de palabras (word embeddings) estáticos para 13 abreviaturas clínicas en el corpus UMN en inglés (de la University of Minnesota) utilizando algoritmos de clasificación tradicionales de aprendizaje automático supervisados (un clasificador por cada abreviatura). Se ha llevado a cabo un segundo experimento utilizando un modelo multi-clasificador sobre todo el conjunto de las 75 abreviaturas del corpus UMN basado en un modelo Transformer pre-entrenado. El objetivo ha sido implementar un clasificador multiclase para predecir también abreviaturas raras y no vistas. Se realizó un experimento adicional para siglas científicas en documentos de dominio abierto mediante la aplicación de un enfoque híbrido compuesto por enfoques supervisados y basados en el conocimiento. Así, basándonos en los resultados de esta tesis, el aprendizaje por transferencia (transfer learning) mediante el ajuste (fine-tuning) de un modelo de lenguaje preentrenado podría predecir abreviaturas raras y no vistas sin necesidad de entrenarlas previamente. Un reto pendiente para el trabajo futuro es mejorar el modelo para automatizar la desambiguación de las abreviaturas clínicas en tiempo de ejecución mediante la implementación de modelos de aprendizaje autosupervisados.Programa de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidente: Israel González Carrasco.- Secretario: Leonardo Campillos Llanos.- Vocal: Ana María García Serran

    Word-sense disambiguation in biomedical ontologies

    Get PDF
    With the ever increase in biomedical literature, text-mining has emerged as an important technology to support bio-curation and search. Word sense disambiguation (WSD), the correct identification of terms in text in the light of ambiguity, is an important problem in text-mining. Since the late 1940s many approaches based on supervised (decision trees, naive Bayes, neural networks, support vector machines) and unsupervised machine learning (context-clustering, word-clustering, co-occurrence graphs) have been developed. Knowledge-based methods that make use of the WordNet computational lexicon have also been developed. But only few make use of ontologies, i.e. hierarchical controlled vocabularies, to solve the problem and none exploit inference over ontologies and the use of metadata from publications. This thesis addresses the WSD problem in biomedical ontologies by suggesting different approaches for word sense disambiguation that use ontologies and metadata. The "Closest Sense" method assumes that the ontology defines multiple senses of the term; it computes the shortest path of co-occurring terms in the document to one of these senses. The "Term Cooc" method defines a log-odds ratio for co-occurring terms including inferred co-occurrences. The "MetaData" approach trains a classifier on metadata; it does not require any ontology, but requires training data, which the other methods do not. These approaches are compared to each other when applied to a manually curated training corpus of 2600 documents for seven ambiguous terms from the Gene Ontology and MeSH. All approaches over all conditions achieve 80% success rate on average. The MetaData approach performs best with 96%, when trained on high-quality data. Its performance deteriorates as quality of the training data decreases. The Term Cooc approach performs better on Gene Ontology (92% success) than on MeSH (73% success) as MeSH is not a strict is-a/part-of, but rather a loose is-related-to hierarchy. The Closest Sense approach achieves on average 80% success rate. Furthermore, the thesis showcases applications ranging from ontology design to semantic search where WSD is important

    Disambiguating Clinical Abbreviations using Pre-trained Word Embeddings

    Get PDF
    Thanks to Palestine Technical University-Kadoorie and Deep EMR project(TIN2017-87548-C2-1-R)for partially funding this work

    Knowledge will Propel Machine Understanding of Content: Extrapolating from Current Examples

    Full text link
    Machine Learning has been a big success story during the AI resurgence. One particular stand out success relates to learning from a massive amount of data. In spite of early assertions of the unreasonable effectiveness of data, there is increasing recognition for utilizing knowledge whenever it is available or can be created purposefully. In this paper, we discuss the indispensable role of knowledge for deeper understanding of content where (i) large amounts of training data are unavailable, (ii) the objects to be recognized are complex, (e.g., implicit entities and highly subjective content), and (iii) applications need to use complementary or related data in multiple modalities/media. What brings us to the cusp of rapid progress is our ability to (a) create relevant and reliable knowledge and (b) carefully exploit knowledge to enhance ML/NLP techniques. Using diverse examples, we seek to foretell unprecedented progress in our ability for deeper understanding and exploitation of multimodal data and continued incorporation of knowledge in learning techniques.Comment: Pre-print of the paper accepted at 2017 IEEE/WIC/ACM International Conference on Web Intelligence (WI). arXiv admin note: substantial text overlap with arXiv:1610.0770
    corecore