185,428 research outputs found

    Supervised Learning Under Distributed Features

    Full text link
    This work studies the problem of learning under both large datasets and large-dimensional feature space scenarios. The feature information is assumed to be spread across agents in a network, where each agent observes some of the features. Through local cooperation, the agents are supposed to interact with each other to solve an inference problem and converge towards the global minimizer of an empirical risk. We study this problem exclusively in the primal domain, and propose new and effective distributed solutions with guaranteed convergence to the minimizer with linear rate under strong convexity. This is achieved by combining a dynamic diffusion construction, a pipeline strategy, and variance-reduced techniques. Simulation results illustrate the conclusions

    Scalable Self-Supervised Representation Learning from Spatiotemporal Motion Trajectories for Multimodal Computer Vision

    Full text link
    Self-supervised representation learning techniques utilize large datasets without semantic annotations to learn meaningful, universal features that can be conveniently transferred to solve a wide variety of downstream supervised tasks. In this work, we propose a self-supervised method for learning representations of geographic locations from unlabeled GPS trajectories to solve downstream geospatial computer vision tasks. Tiles resulting from a raster representation of the earth's surface are modeled as nodes on a graph or pixels of an image. GPS trajectories are modeled as allowed Markovian paths on these nodes. A scalable and distributed algorithm is presented to compute image-like representations, called reachability summaries, of the spatial connectivity patterns between tiles and their neighbors implied by the observed Markovian paths. A convolutional, contractive autoencoder is trained to learn compressed representations, called reachability embeddings, of reachability summaries for every tile. Reachability embeddings serve as task-agnostic, feature representations of geographic locations. Using reachability embeddings as pixel representations for five different downstream geospatial tasks, cast as supervised semantic segmentation problems, we quantitatively demonstrate that reachability embeddings are semantically meaningful representations and result in 4-23% gain in performance, as measured using area under the precision-recall curve (AUPRC) metric, when compared to baseline models that use pixel representations that do not account for the spatial connectivity between tiles. Reachability embeddings transform sequential, spatiotemporal mobility data into semantically meaningful tensor representations that can be combined with other sources of imagery and are designed to facilitate multimodal learning in geospatial computer vision.Comment: Extended abstract accepted for presentation at BayLearn 2022. 3 pages, 2 figures, 1 table. Abstract based on IEEE MDM 2022 research track paper: arXiv:2110.1252

    Supervised learning for suicidal ideation detection in online user content

    Full text link
    Copyright © 2018 Shaoxiong Ji et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Early detection and treatment are regarded as the most effective ways to prevent suicidal ideation and potential suicide attempts-two critical risk factors resulting in successful suicides. Online communication channels are becoming a new way for people to express their suicidal tendencies. This paper presents an approach to understand suicidal ideation through online user-generated content with the goal of early detection via supervised learning. Analysing users' language preferences and topic descriptions reveals rich knowledge that can be used as an early warning system for detecting suicidal tendencies. Suicidal individuals express strong negative feelings, anxiety, and hopelessness. Suicidal thoughts may involve family and friends. And topics they discuss cover both personal and social issues. To detect suicidal ideation, we extract several informative sets of features, including statistical, syntactic, linguistic, word embedding, and topic features, and we compare six classifiers, including four traditional supervised classifiers and two neural network models. An experimental study demonstrates the feasibility and practicability of the approach and provides benchmarks for the suicidal ideation detection on the active online platforms: Reddit SuicideWatch and Twitter

    Self-supervised and semi-supervised learning for road condition estimation from distributed road-side cameras

    Get PDF
    Monitoring road conditions, e.g., water build-up due to intense rainfall, plays a fundamental role in ensuring road safety while increasing resilience to the effects of climate change. Distributed cameras provide an easy and affordable alternative to instrumented weather stations, enabling diffused and capillary road monitoring. Here, we propose a deep learning-based solution to automatically detect wet road events in continuous video streams acquired by road-side surveillance cameras. Our contribution is two-fold: first, we employ a convolutional Long Short-Term Memory model (convLSTM) to detect subtle changes in the road appearance, introducing a novel temporally consistent data augmentation to increase robustness to outdoor illumination conditions. Second, we present a contrastive self-supervised framework that is uniquely tailored to surveillance camera networks. The proposed technique was validated on a large-scale dataset comprising roughly 2000 full day sequences (roughly 400K video frames, of which 300K unlabelled), acquired from several road-side cameras over a span of two years. Experimental results show the effectiveness of self-supervised and semi-supervised learning, increasing the frame classification performance (measured by the Area under the ROC curve) from 0.86 to 0.92. From the standpoint of event detection, we show that incorporating temporal features through a convLSTM model both improves the detection rate of wet road events (+10%) and reduces false positive alarms (–45%). The proposed techniques could benefit also other tasks related to weather analysis from road-side and vehicle-mounted cameras

    Large-Scale Neural Systems for Vision and Cognition

    Full text link
    — Consideration of how people respond to the question What is this? has suggested new problem frontiers for pattern recognition and information fusion, as well as neural systems that embody the cognitive transformation of declarative information into relational knowledge. In contrast to traditional classification methods, which aim to find the single correct label for each exemplar (This is a car), the new approach discovers rules that embody coherent relationships among labels which would otherwise appear contradictory to a learning system (This is a car, that is a vehicle, over there is a sedan). This talk will describe how an individual who experiences exemplars in real time, with each exemplar trained on at most one category label, can autonomously discover a hierarchy of cognitive rules, thereby converting local information into global knowledge. Computational examples are based on the observation that sensors working at different times, locations, and spatial scales, and experts with different goals, languages, and situations, may produce apparently inconsistent image labels, which are reconciled by implicit underlying relationships that the network’s learning process discovers. The ARTMAP information fusion system can, moreover, integrate multiple separate knowledge hierarchies, by fusing independent domains into a unified structure. In the process, the system discovers cross-domain rules, inferring multilevel relationships among groups of output classes, without any supervised labeling of these relationships. In order to self-organize its expert system, the ARTMAP information fusion network features distributed code representations which exploit the model’s intrinsic capacity for one-to-many learning (This is a car and a vehicle and a sedan) as well as many-to-one learning (Each of those vehicles is a car). Fusion system software, testbed datasets, and articles are available from http://cns.bu.edu/techlab.Defense Advanced Research Projects Research Agency (Hewlett-Packard Company, DARPA HR0011-09-3-0001; HRL Laboratories LLC subcontract 801881-BS under prime contract HR0011-09-C-0011); Science of Learning Centers program of the National Science Foundation (SBE-0354378

    A Very Brief Introduction to Machine Learning With Applications to Communication Systems

    Get PDF
    Given the unprecedented availability of data and computing resources, there is widespread renewed interest in applying data-driven machine learning methods to problems for which the development of conventional engineering solutions is challenged by modelling or algorithmic deficiencies. This tutorial-style paper starts by addressing the questions of why and when such techniques can be useful. It then provides a high-level introduction to the basics of supervised and unsupervised learning. For both supervised and unsupervised learning, exemplifying applications to communication networks are discussed by distinguishing tasks carried out at the edge and at the cloud segments of the network at different layers of the protocol stack
    • …
    corecore