16,320 research outputs found

    Online supervised hashing

    Full text link
    Fast nearest neighbor search is becoming more and more crucial given the advent of large-scale data in many computer vision applications. Hashing approaches provide both fast search mechanisms and compact index structures to address this critical need. In image retrieval problems where labeled training data is available, supervised hashing methods prevail over unsupervised methods. Most state-of-the-art supervised hashing approaches employ batch-learners. Unfortunately, batch-learning strategies may be inefficient when confronted with large datasets. Moreover, with batch-learners, it is unclear how to adapt the hash functions as the dataset continues to grow and new variations appear over time. To handle these issues, we propose OSH: an Online Supervised Hashing technique that is based on Error Correcting Output Codes. We consider a stochastic setting where the data arrives sequentially and our method learns and adapts its hashing functions in a discriminative manner. Our method makes no assumption about the number of possible class labels, and accommodates new classes as they are presented in the incoming data stream. In experiments with three image retrieval benchmarks, our method yields state-of-the-art retrieval performance as measured in Mean Average Precision, while also being orders-of-magnitude faster than competing batch methods for supervised hashing. Also, our method significantly outperforms recently introduced online hashing solutions.https://pdfs.semanticscholar.org/555b/de4f14630d8606e37096235da8933df228f1.pdfAccepted manuscrip

    DivGraphPointer: A Graph Pointer Network for Extracting Diverse Keyphrases

    Full text link
    Keyphrase extraction from documents is useful to a variety of applications such as information retrieval and document summarization. This paper presents an end-to-end method called DivGraphPointer for extracting a set of diversified keyphrases from a document. DivGraphPointer combines the advantages of traditional graph-based ranking methods and recent neural network-based approaches. Specifically, given a document, a word graph is constructed from the document based on word proximity and is encoded with graph convolutional networks, which effectively capture document-level word salience by modeling long-range dependency between words in the document and aggregating multiple appearances of identical words into one node. Furthermore, we propose a diversified point network to generate a set of diverse keyphrases out of the word graph in the decoding process. Experimental results on five benchmark data sets show that our proposed method significantly outperforms the existing state-of-the-art approaches.Comment: Accepted to SIGIR 201
    • …
    corecore