240 research outputs found

    Deep Supervised Hashing using Symmetric Relative Entropy

    Get PDF
    By virtue of their simplicity and efficiency, hashing algorithms have achieved significant success on large-scale approximate nearest neighbor search. Recently, many deep neural network based hashing methods have been proposed to improve the search accuracy by simultaneously learning both the feature representation and the binary hash functions. Most deep hashing methods depend on supervised semantic label information for preserving the distance or similarity between local structures, which unfortunately ignores the global distribution of the learned hash codes. We propose a novel deep supervised hashing method that aims to minimize the information loss generated during the embedding process. Specifically, the information loss is measured by the Jensen-Shannon divergence to ensure that compact hash codes have a similar distribution with those from the original images. Experimental results show that our method outperforms current state-of-the-art approaches on two benchmark datasets

    Enhanced Discrete Multi-modal Hashing: More Constraints yet Less Time to Learn (Extended Abstract)

    Get PDF
    This paper proposes a novel method, Enhanced Discrete Multi-modal Hashing (EDMH), which learns binary codes and hash functions simultaneously from the pairwise similarity matrix of data for large-scale cross-view retrieval. EDMH distinguishes itself from existing methods by considering not just the binarization constraint but also the balance and decorrelation constraints. Although those additional discrete constraints make the optimization problem of EDMH look a lot more complicated, we are actually able to develop a fast iterative learning algorithm in the alternating optimization framework for it, as after introducing a couple of auxiliary variables each subproblem of optimization turns out to have closed-form solutions. It has been confirmed by extensive experiments that EDMH can consistently deliver better retrieval performances than state-of-the-art MH methods at lower computational costs

    A deep locality-sensitive hashing approach for achieving optimal ‎image retrieval satisfaction

    Get PDF
    Efficient methods that enable high and rapid image retrieval are continuously needed, especially with the large mass of images that are generated from different sectors and domains like business, communication media, and entertainment. Recently, deep neural networks are extensively proved higher-performing models compared to other traditional models. Besides, combining hashing methods with a deep learning architecture improves the image retrieval time and accuracy. In this paper, we propose a novel image retrieval method that employs locality-sensitive hashing with convolutional neural networks (CNN) to extract different types of features from different model layers. The aim of this hybrid framework is focusing on both the high-level information that provides semantic content and the low-level information that provides visual content of the images. Hash tables are constructed from the extracted features and trained to achieve fast image retrieval. To verify the effectiveness of the proposed framework, a variety of experiments and computational performance analysis are carried out on the CIFRA-10 and NUS-WIDE datasets. The experimental results show that the proposed method surpasses most existing hash-based image retrieval methods

    Unsupervised multi-graph cross-modal hashing for large-scale multimedia retrieval

    Get PDF
    • …
    corecore