1,309 research outputs found

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Machine Learning Model for Repurposing Drugs to Target Viral Diseases

    Get PDF
    With recent events, such as the Covid-19 pandemic, it is increasingly important to develop strategies to combat viral diseases. Due to technological advancements, computer-aided drug design and machine learning (ML)-based hit identification strategies have gained popularity. Applying these techniques to identify novel scaffolds and/or repurpose existing therapeutics for viral diseases is a promising approach. As an avenue to improve existing classification models for antiviral applications, this thesis aimed to make improvements to non-binding data selection within these models. We created a classification model using molecular fingerprints to assess the performance of machine learning predictions when the model is trained using randomly selected and rationally selected non-binding datasets. Our analyses revealed that machine learning predictions can be improved using a rational selection approach. We further used this approach and trained three machine learning models based on XGBoost, Random Forest, and Support Vector Machine to predict potential inhibitors for the SARS-CoV2 main protease (Mpro) enzyme. Probability-ranked hits from the combined model were further analyzed using classical structure-based methods. The binding modes and affinities of the hits were identified using AutoDock Vina, and molecular dynamics simulations-enabled MM-GBSA calculations. The top hits identified from this multi-step screening approach revealed potential candidates that show improved affinity and stability than existing non-covalent Mpro inhibitors. Thus, our approach and the model could be useful for screening large ligand libraries

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Undergraduate Catalog of Studies, 2022-2023

    Get PDF

    Approximate Computing Survey, Part I: Terminology and Software & Hardware Approximation Techniques

    Full text link
    The rapid growth of demanding applications in domains applying multimedia processing and machine learning has marked a new era for edge and cloud computing. These applications involve massive data and compute-intensive tasks, and thus, typical computing paradigms in embedded systems and data centers are stressed to meet the worldwide demand for high performance. Concurrently, the landscape of the semiconductor field in the last 15 years has constituted power as a first-class design concern. As a result, the community of computing systems is forced to find alternative design approaches to facilitate high-performance and/or power-efficient computing. Among the examined solutions, Approximate Computing has attracted an ever-increasing interest, with research works applying approximations across the entire traditional computing stack, i.e., at software, hardware, and architectural levels. Over the last decade, there is a plethora of approximation techniques in software (programs, frameworks, compilers, runtimes, languages), hardware (circuits, accelerators), and architectures (processors, memories). The current article is Part I of our comprehensive survey on Approximate Computing, and it reviews its motivation, terminology and principles, as well it classifies and presents the technical details of the state-of-the-art software and hardware approximation techniques.Comment: Under Review at ACM Computing Survey

    The role of artificial intelligence-driven soft sensors in advanced sustainable process industries: a critical review

    Get PDF
    With the predicted depletion of natural resources and alarming environmental issues, sustainable development has become a popular as well as a much-needed concept in modern process industries. Hence, manufacturers are quite keen on adopting novel process monitoring techniques to enhance product quality and process efficiency while minimizing possible adverse environmental impacts. Hardware sensors are employed in process industries to aid process monitoring and control, but they are associated with many limitations such as disturbances to the process flow, measurement delays, frequent need for maintenance, and high capital costs. As a result, soft sensors have become an attractive alternative for predicting quality-related parameters that are ‘hard-to-measure’ using hardware sensors. Due to their promising features over hardware counterparts, they have been employed across different process industries. This article attempts to explore the state-of-the-art artificial intelligence (Al)-driven soft sensors designed for process industries and their role in achieving the goal of sustainable development. First, a general introduction is given to soft sensors, their applications in different process industries, and their significance in achieving sustainable development goals. AI-based soft sensing algorithms are then introduced. Next, a discussion on how AI-driven soft sensors contribute toward different sustainable manufacturing strategies of process industries is provided. This is followed by a critical review of the most recent state-of-the-art AI-based soft sensors reported in the literature. Here, the use of powerful AI-based algorithms for addressing the limitations of traditional algorithms, that restrict the soft sensor performance is discussed. Finally, the challenges and limitations associated with the current soft sensor design, application, and maintenance aspects are discussed with possible future directions for designing more intelligent and smart soft sensing technologies to cater the future industrial needs

    A Review of the Role of Causality in Developing Trustworthy AI Systems

    Full text link
    State-of-the-art AI models largely lack an understanding of the cause-effect relationship that governs human understanding of the real world. Consequently, these models do not generalize to unseen data, often produce unfair results, and are difficult to interpret. This has led to efforts to improve the trustworthiness aspects of AI models. Recently, causal modeling and inference methods have emerged as powerful tools. This review aims to provide the reader with an overview of causal methods that have been developed to improve the trustworthiness of AI models. We hope that our contribution will motivate future research on causality-based solutions for trustworthy AI.Comment: 55 pages, 8 figures. Under revie
    • …
    corecore