10 research outputs found

    水中イメージングシステムのための画質改善に関する研究

    Get PDF
    Underwater survey systems have numerous scientific or industrial applications in the fields of geology, biology, mining, and archeology. These application fields involve various tasks such as ecological studies, environmental damage assessment, and ancient prospection. During two decades, underwater imaging systems are mainly equipped by Underwater Vehicles (UV) for surveying in water or ocean. Challenges associated with obtaining visibility of objects have been difficult to overcome due to the physical properties of the medium. In the last two decades, sonar is usually used for the detection and recognition of targets in the ocean or underwater environment. However, because of the low quality of images by sonar imaging, optical vision sensors are then used instead of it for short range identification. Optical imaging provides short-range, high-resolution visual information of the ocean floor. However, due to the light transmission’s physical properties in the water medium, the optical imaged underwater images are usually performance as poor visibility. Light is highly attenuated when it travels in the ocean. Consequence, the imaged scenes result as poorly contrasted and hazy-like obstructions. The underwater imaging processing techniques are important to improve the quality of underwater images. As mentioned before, underwater images have poor visibility because of the medium scattering and light distortion. In contrast to common photographs, underwater optical images suffer from poor visibility owing to the medium, which causes scattering, color distortion, and absorption. Large suspended particles cause scattering similar to the scattering of light in fog or turbid water that contain many suspended particles. Color distortion occurs because different wavelengths are attenuated to different degrees in water; consequently, images of ambient in the underwater environments are dominated by a bluish tone, because higher wavelengths are attenuated more quickly. Absorption of light in water substantially reduces its intensity. The random attenuation of light causes a hazy appearance as the light backscattered by water along the line of sight considerably degrades image contrast. Especially, objects at a distance of more than 10 meters from the observation point are almost unreadable because colors are faded as characteristic wavelengths, which are filtered according to the distance traveled by light in water. So, traditional image processing methods are not suitable for processing them well. This thesis proposes strategies and solutions to tackle the above mentioned problems of underwater survey systems. In this thesis, we contribute image pre-processing, denoising, dehazing, inhomogeneities correction, color correction and fusion technologies for underwater image quality improvement. The main content of this thesis is as follows. First, comprehensive reviews of the current and most prominent underwater imaging systems are provided in Chapter 1. A main features and performance based classification criterion for the existing systems is presented. After that, by analyzing the challenges of the underwater imaging systems, a hardware based approach and non-hardware based approach is introduced. In this thesis, we are concerned about the image processing based technologies, which are one of the non-hardware approaches, and take most recent methods to process the low quality underwater images. As the different sonar imaging systems applied in much equipment, such as side-scan sonar, multi-beam sonar. The different sonar acquires different images with different characteristics. Side-scan sonar acquires high quality imagery of the seafloor with very high spatial resolution but poor locational accuracy. On the contrast, multi-beam sonar obtains high precision position and underwater depth in seafloor points. In order to fully utilize all information of these two types of sonars, it is necessary to fuse the two kinds of sonar data in Chapter 2. Considering the sonar image forming principle, for the low frequency curvelet coefficients, we use the maximum local energy method to calculate the energy of two sonar images. For the high frequency curvelet coefficients, we take absolute maximum method as a measurement. The main attributes are: firstly, the multi-resolution analysis method is well adapted the cured-singularities and point-singularities. It is useful for sonar intensity image enhancement. Secondly, maximum local energy is well performing the intensity sonar images, which can achieve perfect fusion result [42]. In Chapter 3, as analyzed the underwater laser imaging system, a Bayesian Contourlet Estimator of Bessel K Form (BCE-BKF) based denoising algorithm is proposed. We take the BCE-BKF probability density function (PDF) to model neighborhood of contourlet coefficients. After that, according to the proposed PDF model, we design a maximum a posteriori (MAP) estimator, which relies on a Bayesian statistics representation of the contourlet coefficients of noisy images. The denoised laser images have better contrast than the others. There are three obvious virtues of the proposed method. Firstly, contourlet transform decomposition prior to curvelet transform and wavelet transform by using ellipse sampling grid. Secondly, BCE-BKF model is more effective in presentation of the noisy image contourlet coefficients. Thirdly, the BCE-BKF model takes full account of the correlation between coefficients [107]. In Chapter 4, we describe a novel method to enhance underwater images by dehazing. In underwater optical imaging, absorption, scattering, and color distortion are three major issues in underwater optical imaging. Light rays traveling through water are scattered and absorbed according to their wavelength. Scattering is caused by large suspended particles that degrade optical images captured underwater. Color distortion occurs because different wavelengths are attenuated to different degrees in water; consequently, images of ambient underwater environments are dominated by a bluish tone. Our key contribution is to propose a fast image and video dehazing algorithm, to compensate the attenuation discrepancy along the propagation path, and to take the influence of the possible presence of an artificial lighting source into consideration [108]. In Chapter 5, we describe a novel method of enhancing underwater optical images or videos using guided multilayer filter and wavelength compensation. In certain circumstances, we need to immediately monitor the underwater environment by disaster recovery support robots or other underwater survey systems. However, due to the inherent optical properties and underwater complex environment, the captured images or videos are distorted seriously. Our key contributions proposed include a novel depth and wavelength based underwater imaging model to compensate for the attenuation discrepancy along the propagation path and a fast guided multilayer filtering enhancing algorithm. The enhanced images are characterized by a reduced noised level, better exposure of the dark regions, and improved global contrast where the finest details and edges are enhanced significantly [109]. The performance of the proposed approaches and the benefits are concluded in Chapter 6. Comprehensive experiments and extensive comparison with the existing related techniques demonstrate the accuracy and effect of our proposed methods.九州工業大学博士学位論文 学位記番号:工博甲第367号 学位授与年月日:平成26年3月25日CHAPTER 1 INTRODUCTION|CHAPTER 2 MULTI-SOURCE IMAGES FUSION|CHAPTER 3 LASER IMAGES DENOISING|CHAPTER 4 OPTICAL IMAGE DEHAZING|CHAPTER 5 SHALLOW WATER DE-SCATTERING|CHAPTER 6 CONCLUSIONS九州工業大学平成25年

    An Experimental-Based Review of Image Enhancement and Image Restoration Methods for Underwater Imaging

    Get PDF
    Underwater images play a key role in ocean exploration, but often suffer from severe quality degradation due to light absorption and scattering in water medium. Although major breakthroughs have been made recently in the general area of image enhancement and restoration, the applicability of new methods for improving the quality of underwater images has not specifically been captured. In this paper, we review the image enhancement and restoration methods that tackle typical underwater image impairments, including some extreme degradations and distortions. Firstly, we introduce the key causes of quality reduction in underwater images, in terms of the underwater image formation model (IFM). Then, we review underwater restoration methods, considering both the IFM-free and the IFM-based approaches. Next, we present an experimental-based comparative evaluation of state-of-the-art IFM-free and IFM-based methods, considering also the prior-based parameter estimation algorithms of the IFM-based methods, using both subjective and objective analysis (the used code is freely available at https://github.com/wangyanckxx/Single-Underwater-Image-Enhancement-and-Color-Restoration). Starting from this study, we pinpoint the key shortcomings of existing methods, drawing recommendations for future research in this area. Our review of underwater image enhancement and restoration provides researchers with the necessary background to appreciate challenges and opportunities in this important field

    Improving images in turbid water through enhanced color correction and particle swarm-intelligence fusion (CCPF)

    Get PDF
    When light travels through a water medium, selective attenuation and scattering have a profound impact on the underwater image. These limitations reduce image quality and impede the ability to perform visual tasks. The suggested integrated color correction with intelligence fusion of particle swarm technique (CCPF) is designed with four phases. The first phase presents a novel way to make improvement on underwater color cast. Limit the improvement to only red color channel. In the second phase, an image is then neutralized from the original image by brightness reconstruction technique resulting in enhancing the image contrast. Next, the mean adjustment based on particle swarm intelligence is implemented to improve the image detail. With the swarm intelligence method, the mean values of inferior color channels are shifted to be close to the mean value of a good color channel. Lastly, a fusion between the brightness reconstructed histogram and modified mean particle swarm intelligence histogram is applied to balance the image color. Analysis of underwater images taken in different depths shows that the proposed CCPF method improves the quality of the output image in terms of neutralizing effectiveness and details accuracy, consequently, significantly outperforming the other state-of-the-art methods. The proposed CCPF approach produces highest average entropy value of 7.823 and average UIQM value of 6.287

    Underwater image restoration: super-resolution and deblurring via sparse representation and denoising by means of marine snow removal

    Get PDF
    Underwater imaging has been widely used as a tool in many fields, however, a major issue is the quality of the resulting images/videos. Due to the light's interaction with water and its constituents, the acquired underwater images/videos often suffer from a significant amount of scatter (blur, haze) and noise. In the light of these issues, this thesis considers problems of low-resolution, blurred and noisy underwater images and proposes several approaches to improve the quality of such images/video frames. Quantitative and qualitative experiments validate the success of proposed algorithms

    An underwater image quality assessment metric

    Get PDF
    Various image enhancement algorithms are adopted to improve underwater images that often suffer from visual distortions. It is critical to assess the output quality of underwater images undergoing enhancement algorithms, and use the results to optimise underwater imaging systems. In our previous study, we created a benchmark for quality assessment of underwater image enhancement via subjective experiments. Building on the benchmark, this paper proposes a new objective metric that can automatically assess the output quality of image enhancement, namely UWEQM. By characterising specific underwater physics and relevant properties of the human visual system, image quality attributes are computed and combined to yield an overall metric. Experimental results show that the proposed UWEQM metric yields good performance in predicting image quality as perceived by human subjects

    Internet of Underwater Things and Big Marine Data Analytics -- A Comprehensive Survey

    Full text link
    The Internet of Underwater Things (IoUT) is an emerging communication ecosystem developed for connecting underwater objects in maritime and underwater environments. The IoUT technology is intricately linked with intelligent boats and ships, smart shores and oceans, automatic marine transportations, positioning and navigation, underwater exploration, disaster prediction and prevention, as well as with intelligent monitoring and security. The IoUT has an influence at various scales ranging from a small scientific observatory, to a midsized harbor, and to covering global oceanic trade. The network architecture of IoUT is intrinsically heterogeneous and should be sufficiently resilient to operate in harsh environments. This creates major challenges in terms of underwater communications, whilst relying on limited energy resources. Additionally, the volume, velocity, and variety of data produced by sensors, hydrophones, and cameras in IoUT is enormous, giving rise to the concept of Big Marine Data (BMD), which has its own processing challenges. Hence, conventional data processing techniques will falter, and bespoke Machine Learning (ML) solutions have to be employed for automatically learning the specific BMD behavior and features facilitating knowledge extraction and decision support. The motivation of this paper is to comprehensively survey the IoUT, BMD, and their synthesis. It also aims for exploring the nexus of BMD with ML. We set out from underwater data collection and then discuss the family of IoUT data communication techniques with an emphasis on the state-of-the-art research challenges. We then review the suite of ML solutions suitable for BMD handling and analytics. We treat the subject deductively from an educational perspective, critically appraising the material surveyed.Comment: 54 pages, 11 figures, 19 tables, IEEE Communications Surveys & Tutorials, peer-reviewed academic journa

    Deep learning for internet of underwater things and ocean data analytics

    Get PDF
    The Internet of Underwater Things (IoUT) is an emerging technological ecosystem developed for connecting objects in maritime and underwater environments. IoUT technologies are empowered by an extreme number of deployed sensors and actuators. In this thesis, multiple IoUT sensory data are augmented with machine intelligence for forecasting purposes

    Enhanced processing methods for light field imaging

    Full text link
    The light field camera provides rich textural and geometric information, but it is still challenging to use it efficiently and accurately to solve computer vision problems. Light field image processing is divided into multiple levels. First, low-level processing technology mainly includes the acquisition of light field images and their preprocessing. Second, the middle-level process consists of the depth estimation, light field encoding, and the extraction of cues from the light field. Third, high-level processing involves 3D reconstruction, target recognition, visual odometry, image reconstruction, and other advanced applications. We propose a series of improved algorithms for each of these levels. The light field signal contains rich angular information. By contrast, traditional computer vision methods, as used for 2D images, often cannot make full use of the high-frequency part of the light field angular information. We propose a fast pre-estimation algorithm to enhance the light field feature to improve its speed and accuracy when keeping full use of the angular information.Light field filtering and refocusing are essential cues in light field signal processing. Modern frequency domain filtering technology and wavelet technology have effectively improved light field filtering accuracy but may fail at object edges. We adapted the sub-window filtering with the light field to improve the reconstruction of object edges. Light field images can analyze the effects of scattering and refraction phenomena, and there are still insufficient metrics to evaluate the results. Therefore, we propose a physical rendering-based light field dataset that simulates the distorted light field image through a transparent medium, such as atmospheric turbulence or water surface. The neural network is an essential method to process complex light field data. We propose an efficient 3D convolutional autoencoder network for the light field structure. This network overcomes the severe distortion caused by high-intensity turbulence with limited angular resolution and solves the difficulty of pixel matching between distorted images. This work emphasizes the application and usefulness of light field imaging in computer vision whilst improving light field image processing speed and accuracy through signal processing, computer graphics, computer vision, and artificial neural networks

    Superposition of dual image fusion with improved dehazing methods for high visibility of underwater image

    Get PDF
    Limited visibility is one of the problem in underwater imagery. As the images captured in deep blue or green ocean, the visibility becomes restricted as the color spectrum is filtered or absorbed by the water medium. This results the objects to be hardly seen and differentiated from the background. The propose method which is called integrated dehazed image fusion (IDF) superimposes two main steps in improving the visibility of the object in deep underwater image. At the beginning, the modified homomorphic filtering is applied to the input image to improve the homogeneous illumination of the image between the background and foreground. Dehazing process is then implemented with integrated of contrast boosting mechanism, followed by dual image fusion technique. Finally, the image is applied with specific local histogram enhancement with adaptive mechanism to improve the local contrast of the image. Implementation of dehazing process improves the effect of homogeneity in the output image which prevent the image from having imbalance color between fore- and background. Superposition with contrast enhancement improves the overall contrast quality of the image. Qualitatively, the output image has better contrast and visibility compare to the current stateof- the-art methods, beside the improvement of overall image color
    corecore