41 research outputs found

    Quantum algorithms for highly non-linear Boolean functions

    Full text link
    Attempts to separate the power of classical and quantum models of computation have a long history. The ultimate goal is to find exponential separations for computational problems. However, such separations do not come a dime a dozen: while there were some early successes in the form of hidden subgroup problems for abelian groups--which generalize Shor's factoring algorithm perhaps most faithfully--only for a handful of non-abelian groups efficient quantum algorithms were found. Recently, problems have gotten increased attention that seek to identify hidden sub-structures of other combinatorial and algebraic objects besides groups. In this paper we provide new examples for exponential separations by considering hidden shift problems that are defined for several classes of highly non-linear Boolean functions. These so-called bent functions arise in cryptography, where their property of having perfectly flat Fourier spectra on the Boolean hypercube gives them resilience against certain types of attack. We present new quantum algorithms that solve the hidden shift problems for several well-known classes of bent functions in polynomial time and with a constant number of queries, while the classical query complexity is shown to be exponential. Our approach uses a technique that exploits the duality between bent functions and their Fourier transforms.Comment: 15 pages, 1 figure, to appear in Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'10). This updated version of the paper contains a new exponential separation between classical and quantum query complexit

    Analyzing Prospects for Quantum Advantage in Topological Data Analysis

    Full text link
    Lloyd et al. were first to demonstrate the promise of quantum algorithms for computing Betti numbers, a way to characterize topological features of data sets. Here, we propose, analyze, and optimize an improved quantum algorithm for topological data analysis (TDA) with reduced scaling, including a method for preparing Dicke states based on inequality testing, a more efficient amplitude estimation algorithm using Kaiser windows, and an optimal implementation of eigenvalue projectors based on Chebyshev polynomials. We compile our approach to a fault-tolerant gate set and estimate constant factors in the Toffoli complexity. Our analysis reveals that super-quadratic quantum speedups are only possible for this problem when targeting a multiplicative error approximation and the Betti number grows asymptotically. Further, we propose a dequantization of the quantum TDA algorithm that shows that having exponentially large dimension and Betti number are necessary, but insufficient conditions, for super-polynomial advantage. We then introduce and analyze specific problem examples which have parameters in the regime where super-polynomial advantages may be achieved, and argue that quantum circuits with tens of billions of Toffoli gates can solve seemingly classically intractable instances.Comment: 54 pages, 7 figures. Added a number of theorems and lemmas to clarify findings and also a discussion in the main text and new appendix about variants of our problems with high Betti numbers that are challenging for recent classical algorithm

    Quantum computation beyond the circuit model

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2008.Includes bibliographical references (p. 133-144).The quantum circuit model is the most widely used model of quantum computation. It provides both a framework for formulating quantum algorithms and an architecture for the physical construction of quantum computers. However, several other models of quantum computation exist which provide useful alternative frameworks for both discovering new quantum algorithms and devising new physical implementations of quantum computers. In this thesis, I first present necessary background material for a general physics audience and discuss existing models of quantum computation. Then, I present three new results relating to various models of quantum computation: a scheme for improving the intrinsic fault tolerance of adiabatic quantum computers using quantum error detecting codes, a proof that a certain problem of estimating Jones polynomials is complete for the one clean qubit complexity class, and a generalization of perturbative gadgets which allows k-body interactions to be directly simulated using 2-body interactions. Lastly, I discuss general principles regarding quantum computation that I learned in the course of my research, and using these principles I propose directions for future research.by Stephen Paul Jordan.Ph.D

    Many-body quantum magic

    Full text link
    Magic (non-stabilizerness) is a necessary but "expensive" kind of "fuel" to drive universal fault-tolerant quantum computation. To properly study and characterize the origin of quantum "complexity" in computation as well as physics, it is crucial to develop a rigorous understanding of the quantification of magic. Previous studies of magic mostly focused on small systems and largely relied on the discrete Wigner formalism (which is only well behaved in odd prime power dimensions). Here we present an initiatory study of the magic of genuinely many-body quantum states (with focus on the important case of many qubits) at a quantitative level. We first address the basic question of how magical a many-body state can be, and show that the maximum and typical magic of an nn-qubit state is essentially nn, simultaneously for a range of natural resource measures. As a corollary, we show that the resource theory of magic with stabilizer-preserving free operations is asymptotically reversible. In the quest for explicit, scalable cases of highly entangled states whose magic can be understood, we connect the magic of hypergraph states with the second-order nonlinearity of their underlying Boolean functions. Next, we go on and investigate many-body magic in practical and physical contexts. We first consider Pauli measurement-based quantum computation, in which magic is a necessary feature of the initial resource state. We show that nn-qubit states with nearly nn magic, or indeed almost all states, cannot supply nontrivial speedups over classical computers. We then present an example of analyzing the magic of "natural" condensed matter systems. We apply the Boolean function techniques to derive explicit bounds on the magic of the ground states of certain 2D symmetry-protected topological (SPT) phases, and comment on possible further connections between magic and the quantum complexity of matter.Comment: 15 pages, 3 figure
    corecore