53 research outputs found

    The Freiman--Ruzsa Theorem over Finite Fields

    Full text link
    Let G be a finite abelian group of torsion r and let A be a subset of G. The Freiman--Ruzsa theorem asserts that if |A+A| < K|A| then A is contained in a coset of a subgroup of G of size at most r^{K^4}K^2|A|. It was conjectured by Ruzsa that the subgroup size can be reduced to r^{CK}|A| for some absolute constant C >= 2. This conjecture was verified for r = 2 in a sequence of recent works, which have, in fact, yielded a tight bound. In this work, we establish the same conjecture for any prime torsion

    Access Structure Hiding Secret Sharing from Novel Set Systems and Vector Families

    Full text link
    Secret sharing provides a means to distribute shares of a secret such that any authorized subset of shares, specified by an access structure, can be pooled together to recompute the secret. The standard secret sharing model requires public access structures, which violates privacy and facilitates the adversary by revealing high-value targets. In this paper, we address this shortcoming by introducing \emph{hidden access structures}, which remain secret until some authorized subset of parties collaborate. The central piece of this work is the construction of a set-system H\mathcal{H} with strictly greater than exp(c1.5(logh)2loglogh)\exp\left(c \dfrac{1.5 (\log h)^2}{\log \log h}\right) subsets of a set of hh elements. Our set-system H\mathcal{H} is defined over Zm\mathbb{Z}_m, where mm is a non-prime-power, such that the size of each set in H\mathcal{H} is divisible by mm but the sizes of their pairwise intersections are not divisible by mm, unless one set is a subset of another. We derive a vector family V\mathcal{V} from H\mathcal{H} such that superset-subset relationships in H\mathcal{H} are represented by inner products in V\mathcal{V}. We use V\mathcal{V} to "encode" the access structures and thereby develop the first \emph{access structure hiding} secret sharing scheme. For a setting with \ell parties, our scheme supports 22/2O(log)+12^{2^{\ell/2 - O(\log \ell) + 1}} out of the 22O(log)2^{2^{\ell - O(\log \ell)}} total monotone access structures, and its maximum share size for any access structures is (1+o(1))2+1π/2(1+ o(1)) \dfrac{2^{\ell+1}}{\sqrt{\pi \ell/2}}. The scheme assumes semi-honest polynomial-time parties, and its security relies on the Generalized Diffie-Hellman assumption.Comment: This is the full version of the paper that appears in D. Kim et al. (Eds.): COCOON 2020 (The 26th International Computing and Combinatorics Conference), LNCS 12273, pp. 246-261. This version contains tighter bounds on the maximum share size, and the total number of access structures supporte

    Polynomials that Sign Represent Parity and Descartes' Rule of Signs

    Full text link
    A real polynomial P(X1,...,Xn)P(X_1,..., X_n) sign represents f:An{0,1}f: A^n \to \{0,1\} if for every (a1,...,an)An(a_1, ..., a_n) \in A^n, the sign of P(a1,...,an)P(a_1,...,a_n) equals (1)f(a1,...,an)(-1)^{f(a_1,...,a_n)}. Such sign representations are well-studied in computer science and have applications to computational complexity and computational learning theory. In this work, we present a systematic study of tradeoffs between degree and sparsity of sign representations through the lens of the parity function. We attempt to prove bounds that hold for any choice of set AA. We show that sign representing parity over {0,...,m1}n\{0,...,m-1\}^n with the degree in each variable at most m1m-1 requires sparsity at least mnm^n. We show that a tradeoff exists between sparsity and degree, by exhibiting a sign representation that has higher degree but lower sparsity. We show a lower bound of n(m2)+1n(m -2) + 1 on the sparsity of polynomials of any degree representing parity over {0,...,m1}n\{0,..., m-1\}^n. We prove exact bounds on the sparsity of such polynomials for any two element subset AA. The main tool used is Descartes' Rule of Signs, a classical result in algebra, relating the sparsity of a polynomial to its number of real roots. As an application, we use bounds on sparsity to derive circuit lower bounds for depth-two AND-OR-NOT circuits with a Threshold Gate at the top. We use this to give a simple proof that such circuits need size 1.5n1.5^n to compute parity, which improves the previous bound of 4/3n/2{4/3}^{n/2} due to Goldmann (1997). We show a tight lower bound of 2n2^n for the inner product function over {0,1}n×{0,1}n\{0,1\}^n \times \{0, 1\}^n.Comment: To appear in Computational Complexit

    Locally decodable codes and the failure of cotype for projective tensor products

    Get PDF
    It is shown that for every p(1,)p\in (1,\infty) there exists a Banach space XX of finite cotype such that the projective tensor product \ell_p\tp X fails to have finite cotype. More generally, if p1,p2,p3(1,)p_1,p_2,p_3\in (1,\infty) satisfy 1p1+1p2+1p31\frac{1}{p_1}+\frac{1}{p_2}+\frac{1}{p_3}\le 1 then \ell_{p_1}\tp\ell_{p_2}\tp\ell_{p_3} does not have finite cotype. This is a proved via a connection to the theory of locally decodable codes

    Submodular Minimization Under Congruency Constraints

    Full text link
    Submodular function minimization (SFM) is a fundamental and efficiently solvable problem class in combinatorial optimization with a multitude of applications in various fields. Surprisingly, there is only very little known about constraint types under which SFM remains efficiently solvable. The arguably most relevant non-trivial constraint class for which polynomial SFM algorithms are known are parity constraints, i.e., optimizing only over sets of odd (or even) cardinality. Parity constraints capture classical combinatorial optimization problems like the odd-cut problem, and they are a key tool in a recent technique to efficiently solve integer programs with a constraint matrix whose subdeterminants are bounded by two in absolute value. We show that efficient SFM is possible even for a significantly larger class than parity constraints, by introducing a new approach that combines techniques from Combinatorial Optimization, Combinatorics, and Number Theory. In particular, we can show that efficient SFM is possible over all sets (of any given lattice) of cardinality r mod m, as long as m is a constant prime power. This covers generalizations of the odd-cut problem with open complexity status, and with relevance in the context of integer programming with higher subdeterminants. To obtain our results, we establish a connection between the correctness of a natural algorithm, and the inexistence of set systems with specific combinatorial properties. We introduce a general technique to disprove the existence of such set systems, which allows for obtaining extensions of our results beyond the above-mentioned setting. These extensions settle two open questions raised by Geelen and Kapadia [Combinatorica, 2017] in the context of computing the girth and cogirth of certain types of binary matroids
    corecore