745 research outputs found

    Superpixel-based Semantic Segmentation Trained by Statistical Process Control

    Full text link
    Semantic segmentation, like other fields of computer vision, has seen a remarkable performance advance by the use of deep convolution neural networks. However, considering that neighboring pixels are heavily dependent on each other, both learning and testing of these methods have a lot of redundant operations. To resolve this problem, the proposed network is trained and tested with only 0.37% of total pixels by superpixel-based sampling and largely reduced the complexity of upsampling calculation. The hypercolumn feature maps are constructed by pyramid module in combination with the convolution layers of the base network. Since the proposed method uses a very small number of sampled pixels, the end-to-end learning of the entire network is difficult with a common learning rate for all the layers. In order to resolve this problem, the learning rate after sampling is controlled by statistical process control (SPC) of gradients in each layer. The proposed method performs better than or equal to the conventional methods that use much more samples on Pascal Context, SUN-RGBD dataset.Comment: Accepted in British Machine Vision Conference (BMVC), 201

    Visual Chunking: A List Prediction Framework for Region-Based Object Detection

    Full text link
    We consider detecting objects in an image by iteratively selecting from a set of arbitrarily shaped candidate regions. Our generic approach, which we term visual chunking, reasons about the locations of multiple object instances in an image while expressively describing object boundaries. We design an optimization criterion for measuring the performance of a list of such detections as a natural extension to a common per-instance metric. We present an efficient algorithm with provable performance for building a high-quality list of detections from any candidate set of region-based proposals. We also develop a simple class-specific algorithm to generate a candidate region instance in near-linear time in the number of low-level superpixels that outperforms other region generating methods. In order to make predictions on novel images at testing time without access to ground truth, we develop learning approaches to emulate these algorithms' behaviors. We demonstrate that our new approach outperforms sophisticated baselines on benchmark datasets.Comment: to appear at ICRA 201

    Dense semantic labeling of sub-decimeter resolution images with convolutional neural networks

    Full text link
    Semantic labeling (or pixel-level land-cover classification) in ultra-high resolution imagery (< 10cm) requires statistical models able to learn high level concepts from spatial data, with large appearance variations. Convolutional Neural Networks (CNNs) achieve this goal by learning discriminatively a hierarchy of representations of increasing abstraction. In this paper we present a CNN-based system relying on an downsample-then-upsample architecture. Specifically, it first learns a rough spatial map of high-level representations by means of convolutions and then learns to upsample them back to the original resolution by deconvolutions. By doing so, the CNN learns to densely label every pixel at the original resolution of the image. This results in many advantages, including i) state-of-the-art numerical accuracy, ii) improved geometric accuracy of predictions and iii) high efficiency at inference time. We test the proposed system on the Vaihingen and Potsdam sub-decimeter resolution datasets, involving semantic labeling of aerial images of 9cm and 5cm resolution, respectively. These datasets are composed by many large and fully annotated tiles allowing an unbiased evaluation of models making use of spatial information. We do so by comparing two standard CNN architectures to the proposed one: standard patch classification, prediction of local label patches by employing only convolutions and full patch labeling by employing deconvolutions. All the systems compare favorably or outperform a state-of-the-art baseline relying on superpixels and powerful appearance descriptors. The proposed full patch labeling CNN outperforms these models by a large margin, also showing a very appealing inference time.Comment: Accepted in IEEE Transactions on Geoscience and Remote Sensing, 201

    Segmentation and semantic labelling of RGBD data with convolutional neural networks and surface fitting

    Get PDF
    We present an approach for segmentation and semantic labelling of RGBD data exploiting together geometrical cues and deep learning techniques. An initial over-segmentation is performed using spectral clustering and a set of non-uniform rational B-spline surfaces is fitted on the extracted segments. Then a convolutional neural network (CNN) receives in input colour and geometry data together with surface fitting parameters. The network is made of nine convolutional stages followed by a softmax classifier and produces a vector of descriptors for each sample. In the next step, an iterative merging algorithm recombines the output of the over-segmentation into larger regions matching the various elements of the scene. The couples of adjacent segments with higher similarity according to the CNN features are candidate to be merged and the surface fitting accuracy is used to detect which couples of segments belong to the same surface. Finally, a set of labelled segments is obtained by combining the segmentation output with the descriptors from the CNN. Experimental results show how the proposed approach outperforms state-of-the-art methods and provides an accurate segmentation and labelling

    Superpixels: An Evaluation of the State-of-the-Art

    Full text link
    Superpixels group perceptually similar pixels to create visually meaningful entities while heavily reducing the number of primitives for subsequent processing steps. As of these properties, superpixel algorithms have received much attention since their naming in 2003. By today, publicly available superpixel algorithms have turned into standard tools in low-level vision. As such, and due to their quick adoption in a wide range of applications, appropriate benchmarks are crucial for algorithm selection and comparison. Until now, the rapidly growing number of algorithms as well as varying experimental setups hindered the development of a unifying benchmark. We present a comprehensive evaluation of 28 state-of-the-art superpixel algorithms utilizing a benchmark focussing on fair comparison and designed to provide new insights relevant for applications. To this end, we explicitly discuss parameter optimization and the importance of strictly enforcing connectivity. Furthermore, by extending well-known metrics, we are able to summarize algorithm performance independent of the number of generated superpixels, thereby overcoming a major limitation of available benchmarks. Furthermore, we discuss runtime, robustness against noise, blur and affine transformations, implementation details as well as aspects of visual quality. Finally, we present an overall ranking of superpixel algorithms which redefines the state-of-the-art and enables researchers to easily select appropriate algorithms and the corresponding implementations which themselves are made publicly available as part of our benchmark at davidstutz.de/projects/superpixel-benchmark/

    Scene understanding for interactive applications

    Get PDF
    Para interactuar con el entorno, es necesario entender que está ocurriendo en la escena donde se desarrolla la acción. Décadas de investigación en el campo de la visión por computador han contribuido a conseguir sistemas que permiten interpretar de manera automática el contenido en una escena a partir de información visual. Se podría decir el objetivo principal de estos sistemas es replicar la capacidad humana para extraer toda la información a partir solo de datos visuales. Por ejemplo, uno de sus objetivos es entender como percibimosel mundo en tres dimensiones o como podemos reconocer sitios y objetos a pesar de la gran variación en su apariencia. Una de las tareas básicas para entender una escena es asignar un significado semántico a cada elemento (píxel) de una imagen. Esta tarea se puede formular como un problema de etiquetado denso el cual especifica valores (etiquetas) a cada pixel o región de una imagen. Dependiendo de la aplicación, estas etiquetas puedenrepresentar conceptos muy diferentes, desde magnitudes físicas como la información de profundidad, hasta información semántica, como la categoría de un objeto. El objetivo general en esta tesis es investigar y desarrollar nuevas técnicas para incorporar automáticamente una retroalimentación por parte del usuario, o un conocimiento previo en sistemas inteligente para conseguir analizar automáticamente el contenido de una escena. en particular,esta tesis explora dos fuentes comunes de información previa proporcionado por los usuario: interacción humana y etiquetado manual de datos de ejemplo.La primera parte de esta tesis esta dedicada a aprendizaje de información de una escena a partir de información proporcionada de manera interactiva por un usuario. Las soluciones que involucran a un usuario imponen limitaciones en el rendimiento, ya que la respuesta que se le da al usuario debe obtenerse en un tiempo interactivo. Esta tesis presenta un paradigma eficiente que aproxima cualquier magnitud por píxel a partir de unos pocos trazos del usuario. Este sistema propaga los escasos datos de entrada proporcionados por el usuario a cada píxel de la imagen. El paradigma propuesto se ha validado a través detres aplicaciones interactivas para editar imágenes, las cuales requieren un conocimiento por píxel de una cierta magnitud, con el objetivo de simular distintos efectos.Otra estrategia común para aprender a partir de información de usuarios es diseñar sistemas supervisados de aprendizaje automático. En los últimos años, las redes neuronales convolucionales han superado el estado del arte de gran variedad de problemas de reconocimiento visual. Sin embargo, para nuevas tareas, los datos necesarios de entrenamiento pueden no estar disponibles y recopilar suficientes no es siempre posible. La segunda parte de esta tesis explora como mejorar los sistema que aprenden etiquetado denso semántico a partir de imágenes previamente etiquetadas por los usuarios. En particular, se presenta y validan estrategias, basadas en los dos principales enfoques para transferir modelos basados en deep learning, para segmentación semántica, con el objetivo de poder aprender nuevas clases cuando los datos de entrenamiento no son suficientes en cantidad o precisión.Estas estrategias se han validado en varios entornos realistas muy diferentes, incluyendo entornos urbanos, imágenes aereas y imágenes submarinas.In order to interact with the environment, it is necessary to understand what is happening on it, on the scene where the action is ocurring. Decades of research in the computer vision field have contributed towards automatically achieving this scene understanding from visual information. Scene understanding is a very broad area of research within the computer vision field. We could say that it tries to replicate the human capability of extracting plenty of information from visual data. For example, we would like to understand how the people perceive the world in three dimensions or can quickly recognize places or objects despite substantial appearance variation. One of the basic tasks in scene understanding from visual data is to assign a semantic meaning to every element of the image, i.e., assign a concept or object label to every pixel in the image. This problem can be formulated as a dense image labeling problem which assigns specific values (labels) to each pixel or region in the image. Depending on the application, the labels can represent very different concepts, from a physical magnitude, such as depth information, to high level semantic information, such as an object category. The general goal in this thesis is to investigate and develop new ways to automatically incorporate human feedback or prior knowledge in intelligent systems that require scene understanding capabilities. In particular, this thesis explores two common sources of prior information from users: human interactions and human labeling of sample data. The first part of this thesis is focused on learning complex scene information from interactive human knowledge. Interactive user solutions impose limitations on the performance where the feedback to the user must be at interactive rates. This thesis presents an efficient interaction paradigm that approximates any per-pixel magnitude from a few user strokes. It propagates the sparse user input to each pixel of the image. We demonstrate the suitability of the proposed paradigm through three interactive image editing applications which require per-pixel knowledge of certain magnitude: simulate the effect of depth of field, dehazing and HDR tone mapping. Other common strategy to learn from user prior knowledge is to design supervised machine-learning approaches. In the last years, Convolutional Neural Networks (CNNs) have pushed the state-of-the-art on a broad variety of visual recognition problems. However, for new tasks, enough training data is not always available and therefore, training from scratch is not always feasible. The second part of this thesis investigates how to improve systems that learn dense semantic labeling of images from user labeled examples. In particular, we present and validate strategies, based on common transfer learning approaches, for semantic segmentation. The goal of these strategies is to learn new specific classes when there is not enough labeled data to train from scratch. We evaluate these strategies across different environments, such as autonomous driving scenes, aerial images or underwater ones.<br /

    Using Stacked Sparse Auto-Encoder and Superpixel CRF for Long-Term Visual Scene Understanding of UGVs

    Get PDF
    Multiple images have been widely used for scene understanding and navigation of unmanned ground vehicles in long term operations. However, as the amount of visual data in multiple images is huge, the cumulative error in many cases becomes untenable. This paper proposes a novel method that can extract features from a large dataset of multiple images efficiently. Then the membership K-means clustering is used for high dimensional features, and the large dataset is divided into N subdatasets to train N conditional random field (CRF) models based on superpixel. A Softmax subdataset selector is used to decide which one of the N CRF models is chosen as the prediction model for labeling images. Furthermore, some experiments are conducted to evaluate the feasibility and performance of the proposed approach
    • …
    corecore