159 research outputs found

    Graph-based Data Modeling and Analysis for Data Fusion in Remote Sensing

    Get PDF
    Hyperspectral imaging provides the capability of increased sensitivity and discrimination over traditional imaging methods by combining standard digital imaging with spectroscopic methods. For each individual pixel in a hyperspectral image (HSI), a continuous spectrum is sampled as the spectral reflectance/radiance signature to facilitate identification of ground cover and surface material. The abundant spectrum knowledge allows all available information from the data to be mined. The superior qualities within hyperspectral imaging allow wide applications such as mineral exploration, agriculture monitoring, and ecological surveillance, etc. The processing of massive high-dimensional HSI datasets is a challenge since many data processing techniques have a computational complexity that grows exponentially with the dimension. Besides, a HSI dataset may contain a limited number of degrees of freedom due to the high correlations between data points and among the spectra. On the other hand, merely taking advantage of the sampled spectrum of individual HSI data point may produce inaccurate results due to the mixed nature of raw HSI data, such as mixed pixels, optical interferences and etc. Fusion strategies are widely adopted in data processing to achieve better performance, especially in the field of classification and clustering. There are mainly three types of fusion strategies, namely low-level data fusion, intermediate-level feature fusion, and high-level decision fusion. Low-level data fusion combines multi-source data that is expected to be complementary or cooperative. Intermediate-level feature fusion aims at selection and combination of features to remove redundant information. Decision level fusion exploits a set of classifiers to provide more accurate results. The fusion strategies have wide applications including HSI data processing. With the fast development of multiple remote sensing modalities, e.g. Very High Resolution (VHR) optical sensors, LiDAR, etc., fusion of multi-source data can in principal produce more detailed information than each single source. On the other hand, besides the abundant spectral information contained in HSI data, features such as texture and shape may be employed to represent data points from a spatial perspective. Furthermore, feature fusion also includes the strategy of removing redundant and noisy features in the dataset. One of the major problems in machine learning and pattern recognition is to develop appropriate representations for complex nonlinear data. In HSI processing, a particular data point is usually described as a vector with coordinates corresponding to the intensities measured in the spectral bands. This vector representation permits the application of linear and nonlinear transformations with linear algebra to find an alternative representation of the data. More generally, HSI is multi-dimensional in nature and the vector representation may lose the contextual correlations. Tensor representation provides a more sophisticated modeling technique and a higher-order generalization to linear subspace analysis. In graph theory, data points can be generalized as nodes with connectivities measured from the proximity of a local neighborhood. The graph-based framework efficiently characterizes the relationships among the data and allows for convenient mathematical manipulation in many applications, such as data clustering, feature extraction, feature selection and data alignment. In this thesis, graph-based approaches applied in the field of multi-source feature and data fusion in remote sensing area are explored. We will mainly investigate the fusion of spatial, spectral and LiDAR information with linear and multilinear algebra under graph-based framework for data clustering and classification problems

    A Multimodal Feature Selection Method for Remote Sensing Data Analysis Based on Double Graph Laplacian Diagonalization

    Get PDF
    When dealing with multivariate remotely sensed records collected by multiple sensors, an accurate selection of information at the data, feature, or decision level is instrumental in improving the scenes’ characterization. This will also enhance the system’s efficiency and provide more details on modeling the physical phenomena occurring on the Earth’s surface. In this article, we introduce a flexible and efficient method based on graph Laplacians for information selection at different levels of data fusion. The proposed approach combines data structure and information content to address the limitations of existing graph-Laplacian-based methods in dealing with heterogeneous datasets. Moreover, it adapts the selection to each homogenous area of the considered images according to their underlying properties. Experimental tests carried out on several multivariate remote sensing datasets show the consistency of the proposed approach

    Deep Learning Meets Hyperspectral Image Analysis: A Multidisciplinary Review

    Get PDF
    Modern hyperspectral imaging systems produce huge datasets potentially conveying a great abundance of information; such a resource, however, poses many challenges in the analysis and interpretation of these data. Deep learning approaches certainly offer a great variety of opportunities for solving classical imaging tasks and also for approaching new stimulating problems in the spatial–spectral domain. This is fundamental in the driving sector of Remote Sensing where hyperspectral technology was born and has mostly developed, but it is perhaps even more true in the multitude of current and evolving application sectors that involve these imaging technologies. The present review develops on two fronts: on the one hand, it is aimed at domain professionals who want to have an updated overview on how hyperspectral acquisition techniques can combine with deep learning architectures to solve specific tasks in different application fields. On the other hand, we want to target the machine learning and computer vision experts by giving them a picture of how deep learning technologies are applied to hyperspectral data from a multidisciplinary perspective. The presence of these two viewpoints and the inclusion of application fields other than Remote Sensing are the original contributions of this review, which also highlights some potentialities and critical issues related to the observed development trends

    Superpixel nonlocal weighting joint sparse representation for hyperspectral image classification.

    Get PDF
    Joint sparse representation classification (JSRC) is a representative spectral–spatial classifier for hyperspectral images (HSIs). However, the JSRC is inappropriate for highly heterogeneous areas due to the spatial information being extracted from a fixed-sized neighborhood block, which is often unable to conform to the naturally irregular structure of land cover. To address this problem, a superpixel-based JSRC with nonlocal weighting, i.e., superpixel-based nonlocal weighted JSRC (SNLW-JSRC), is proposed in this paper. In SNLW-JSRC, the superpixel representation of an HSI is first constructed based on an entropy rate segmentation method. This strategy forms homogeneous neighborhoods with naturally irregular structures and alleviates the inclusion of pixels from different classes in the process of spatial information extraction. Afterwards, the superpixel-based nonlocal weighting (SNLW) scheme is built to weigh the superpixel based on its structural and spectral information. In this way, the weight of one specific neighboring pixel is determined by the local structural similarity between the neighboring pixel and the central test pixel. Then, the obtained local weights are used to generate the weighted mean data for each superpixel. Finally, JSRC is used to produce the superpixel-level classification. This speeds up the sparse representation and makes the spatial content more centralized and compact. To verify the proposed SNLW-JSRC method, we conducted experiments on four benchmark hyperspectral datasets, namely Indian Pines, Pavia University, Salinas, and DFC2013. The experimental results suggest that the SNLW-JSRC can achieve better classification results than the other four SRC-based algorithms and the classical support vector machine algorithm. Moreover, the SNLW-JSRC can also outperform the other SRC-based algorithms, even with a small number of training samples

    Techniques for the extraction of spatial and spectral information in the supervised classification of hyperspectral imagery for land-cover applications

    Get PDF
    The objective of this PhD thesis is the development of spatialspectral information extraction techniques for supervised classification tasks, both by means of classical models and those based on deep learning, to be used in the classification of land use or land cover (LULC) multi- and hyper-spectral images obtained by remote sensing. The main goal is the efficient application of these techniques, so that they are able to obtain satisfactory classification results with a low use of computational resources and low execution time

    Rich probabilistic models for semantic labeling

    Get PDF
    Das Ziel dieser Monographie ist es die Methoden und Anwendungen des semantischen Labelings zu erforschen. Unsere Beiträge zu diesem sich rasch entwickelten Thema sind bestimmte Aspekte der Modellierung und der Inferenz in probabilistischen Modellen und ihre Anwendungen in den interdisziplinären Bereichen der Computer Vision sowie medizinischer Bildverarbeitung und Fernerkundung

    Texture Extraction Techniques for the Classification of Vegetation Species in Hyperspectral Imagery: Bag of Words Approach Based on Superpixels

    Get PDF
    Texture information allows characterizing the regions of interest in a scene. It refers to the spatial organization of the fundamental microstructures in natural images. Texture extraction has been a challenging problem in the field of image processing for decades. In this paper, different techniques based on the classic Bag of Words (BoW) approach for solving the texture extraction problem in the case of hyperspectral images of the Earth surface are proposed. In all cases the texture extraction is performed inside regions of the scene called superpixels and the algorithms profit from the information available in all the bands of the image. The main contribution is the use of superpixel segmentation to obtain irregular patches from the images prior to texture extraction. Texture descriptors are extracted from each superpixel. Three schemes for texture extraction are proposed: codebook-based, descriptor-based, and spectral-enhanced descriptor-based. The first one is based on a codebook generator algorithm, while the other two include additional stages of keypoint detection and description. The evaluation is performed by analyzing the results of a supervised classification using Support Vector Machines (SVM), Random Forest (RF), and Extreme Learning Machines (ELM) after the texture extraction. The results show that the extraction of textures inside superpixels increases the accuracy of the obtained classification map. The proposed techniques are analyzed over different multi and hyperspectral datasets focusing on vegetation species identification. The best classification results for each image in terms of Overall Accuracy (OA) range from 81.07% to 93.77% for images taken at a river area in Galicia (Spain), and from 79.63% to 95.79% for a vast rural region in China with reasonable computation timesThis work was supported in part by the Civil Program UAVs Initiative, promoted by the Xunta de Galicia and developed in partnership with the Babcock Company to promote the use of unmanned technologies in civil services. We also have to acknowledge the support by Ministerio de Ciencia e Innovación, Government of Spain (grant number PID2019-104834GB-I00), and Consellería de Educación, Universidade e Formación Profesional (ED431C 2018/19, and accreditation 2019-2022 ED431G-2019/04). All are cofunded by the European Regional Development Fund (ERDF)S
    corecore