6 research outputs found

    Flocks, Swarms, Crowds, and Societies: On the Scope and Limits of Cognition

    Get PDF
    Traditionally, the concept of cognition has been tied to the brain or the nervous system. Recent work in various noncomputational cognitive sciences has enlarged the category of “cognitive phenomena” to include the organism and its environment, distributed cognition across networks of actors, and basic cellular functions. The meaning, scope, and limits of ‘cognition’ are no longer clear or well-defined. In order to properly delimit the purview of the cognitive sciences, there is a strong need for a clarification of the definition of cognition. This paper will consider the outer bounds of that definition. Not all cognitive behaviors of a given organism are amenable to an analysis at the organismic or organism-environment level. In some cases, emergent cognition in collective biological and human social systems arises that is irreducible to the sum cognitions of their constituent entities. The group and social systems under consideration are more extensive and inclusive than those considered in studies of distributed cognition to date. The implications for this ultimately expand the purview of the cognitive sciences and bring back a renewed relevance for anthropology and introduce sociology on the traditional six-pronged interdisciplinary wheel of the cognitive sciences

    Human Computation and Convergence

    Full text link
    Humans are the most effective integrators and producers of information, directly and through the use of information-processing inventions. As these inventions become increasingly sophisticated, the substantive role of humans in processing information will tend toward capabilities that derive from our most complex cognitive processes, e.g., abstraction, creativity, and applied world knowledge. Through the advancement of human computation - methods that leverage the respective strengths of humans and machines in distributed information-processing systems - formerly discrete processes will combine synergistically into increasingly integrated and complex information processing systems. These new, collective systems will exhibit an unprecedented degree of predictive accuracy in modeling physical and techno-social processes, and may ultimately coalesce into a single unified predictive organism, with the capacity to address societies most wicked problems and achieve planetary homeostasis.Comment: Pre-publication draft of chapter. 24 pages, 3 figures; added references to page 1 and 3, and corrected typ

    Capturing interpersonal coordination processes in association football : from dyads to collectives

    Get PDF
    Doutoramento em Motricidade Humana, na especialidade de Ciências do DesportoThe purpose of this thesis was to investigate how football performers coordinate their behaviours in different levels of social organisation. We began with a position paper proposing the re-conceptualisation of sport teams as functional integrated superorganisms to frame a deeper understanding of the interpersonal coordination processes emerging between team players. Time-motion analysis procedures and innovative tools were developed and presented in order to capture the superorganismic properties of sports teams and the interpersonal coordination tendencies developed by players. These tendencies were captured and analysed in representative 1vs1 and 3vs3 sub-phases, as well as in the 11-a-side game format. Data showed higher levels of variability at the individual level compared to the team level. This finding suggested that micro-variability may contribute to stabilise the behavioural dynamics at the collective level. Moreover, the specificities of the interpersonal coordination tendencies displayed within attacking-defending dyads demonstrated to have influenced the performance outcome. Attacking players tend to succeed when they were more synchronised in space and time with the defenders, and their interaction were more unpredictable/irregular. Besides, the time-evolving dynamics of the collective behaviours (i.e., at 11-a-side level) during competitive football performance indicated a tendency for an increase in the predictability (i.e., more regularity). These data were interpreted as evidencing co-adaptation processes between opponent players, which suggest that team players may shift from prevalent explorative and irregular behaviours to more predictable behaviours emerging due changes in their functional movement possibilities. However, some game events such as goals scored, halftime and stoppages in play seemed to break this continuum and acted as relevant performance constraints.FCT - Fundação para Ciência e a Tecnologi

    When and Why Did Human Brains Decrease in Size? A New Change-Point Analysis and Insights From Brain Evolution in Ants

    Get PDF
    Human brain size nearly quadrupled in the six million years since Homo last shared a common ancestor with chimpanzees, but human brains are thought to have decreased in volume since the end of the last Ice Age. The timing and reason for this decrease is enigmatic. Here we use change-point analysis to estimate the timing of changes in the rate of hominin brain evolution. We find that hominin brains experienced positive rate changes at 2.1 and 1.5 million years ago, coincident with the early evolution of Homo and technological innovations evident in the archeological record. But we also find that human brain size reduction was surprisingly recent, occurring in the last 3,000 years. Our dating does not support hypotheses concerning brain size reduction as a by-product of body size reduction, a result of a shift to an agricultural diet, or a consequence of self-domestication. We suggest our analysis supports the hypothesis that the recent decrease in brain size may instead result from the externalization of knowledge and advantages of group-level decision-making due in part to the advent of social systems of distributed cognition and the storage and sharing of information. Humans live in social groups in which multiple brains contribute to the emergence of collective intelligence. Although difficult to study in the deep history of Homo, the impacts of group size, social organization, collective intelligence and other potential selective forces on brain evolution can be elucidated using ants as models. The remarkable ecological diversity of ants and their species richness encompasses forms convergent in aspects of human sociality, including large group size, agrarian life histories, division of labor, and collective cognition. Ants provide a wide range of social systems to generate and test hypotheses concerning brain size enlargement or reduction and aid in interpreting patterns of brain evolution identified in humans. Although humans and ants represent very different routes in social and cognitive evolution, the insights ants offer can broadly inform us of the selective forces that influence brain size

    Open Works: Between the Programmed and the Free, Art in Italy 1962 to 1972

    Full text link
    This dissertation historicizes and theorizes a group of Italian artists who were among the first to use computers and cybernetics to make artworks, developing the genre of Arte Programmata, or Programmed Art. It argues that the artists of Arte Programmata (Bruno Munari, Enzo Mari, and collectives Gruppo T and Gruppo N) turned to the generative, interactive, and probabilistic aspects of early computers not simply as new media for making art but as platforms for radically altering what it means to be a participant in an increasingly mediated and networked world. This is apparent in how each of their works deploys computers to restructure the relationship between subjects and their environment. In kinetic sculptures modeled on computer programs, the audience is invited to participate in the creation of the work; in immersive environments based on cybernetics and information theory, visitors are simultaneously activated, disoriented, and manipulated; and underlying designs for home goods is a concept of the world as an adaptable, interconnected system of subjects and space. Far from being antagonistic to liberty, Arte Programmata’s multi-faceted oeuvre demonstrates that technology supports individual’s capacity to act upon and affect their environment. Therefore I contend we should understand that programming, cybernetic systems, and even control are not categorically antithetical to individual freedom but comprise the conditions that allow for and encourage subjective agency. Bridging art history and media studies, this dissertation underscores how both art and technology are ways of visualizing and structuring social interaction, and it argues for a reassessment of the political, critical, and even visionary role of new media art like Arte Programmata

    ASTRAL PROJECTION: THEORIES OF METAPHOR, PHILOSOPHIES OF SCIENCE, AND THE ART O F SCIENTIFIC VISUALIZATION

    Get PDF
    This thesis provides an intellectual context for my work in computational scientific visualization for large-scale public outreach in venues such as digitaldome planetarium shows and high-definition public television documentaries. In my associated practicum, a DVD that provides video excerpts, 1 focus especially on work I have created with my Advanced Visualization Laboratory team at the National Center for Supercomputing Applications (Champaign, Illinois) from 2002-2007. 1 make three main contributions to knowledge within the field of computational scientific visualization. Firstly, I share the unique process 1 have pioneered for collaboratively producing and exhibiting this data-driven art when aimed at popular science education. The message of the art complements its means of production: Renaissance Team collaborations enact a cooperative paradigm of evolutionary sympathetic adaptation and co-creation. Secondly, 1 open up a positive, new space within computational scientific visualization's practice for artistic expression—especially in providing a theory of digi-epistemology that accounts for how this is possible given the limitations imposed by the demands of mapping numerical data and the computational models derived from them onto visual forms. I am concerned not only with liberating artists to enrich audience's aesthetic experiences of scientific visualization, to contribute their own vision, but also with conceiving of audiences as co-creators of the aesthetic significance of the work, to re-envision and re-circulate what they encounter there. Even more commonly than in the age of traditional media, on-line social computing and digital tools have empowered the public to capture and repurpose visual metaphors, circulating them within new contexts and telling new stories with them. Thirdly, I demonstrate the creative power of visaphors (see footnote, p. 1) to provide novel embodied experiences through my practicum as well as my thesis discussion. Specifically, I describe how the visaphors my Renaissance Teams and I create enrich the Environmentalist Story of Science, essentially promoting a counter-narrative to the Enlightenment Story of Science through articulating how humanity participates in an evolving universal consciousness through our embodied interaction and cooperative interdependence within nested, self-producing (autopoetic) systems, from the micro- to the macroscopic. This contemporary account of the natural world, its inter-related systems, and their dynamics may be understood as expressing a creative and generative energy—a kind of consciousness-that transcends the human yet also encompasses it
    corecore