153 research outputs found

    On the Complexity of Decomposable Randomized Encodings, Or: How Friendly Can a Garbling-Friendly PRF Be?

    Get PDF

    An exponential lower bound for real-time branching programs

    Get PDF
    Branching programs are a general model of sequential computation. One of their computational features is their possibility to question (repeatedly) the information from each input bit. Real-time branching programs make at most n questions when computing on an input of length n. The restriction “real-time” allows to find a simple language which requires the lower bound 2√2n/8 on memory (= the state space)

    Bounded-width polynomial-size branching programs recognize exactly those languages in NC1

    Get PDF
    AbstractWe show that any language recognized by an NC1 circuit (fan-in 2, depth O(log n)) can be recognized by a width-5 polynomial-size branching program. As any bounded-width polynomial-size branching program can be simulated by an NC1 circuit, we have that the class of languages recognized by such programs is exactly nonuniform NC1. Further, following Ruzzo (J. Comput. System Sci. 22 (1981), 365–383) and Cook (Inform. and Control 64 (1985) 2–22), if the branching programs are restricted to be ATIME(logn)-uniform, they recognize the same languages as do ATIME(log n)-uniform NC1 circuits, that is, those languages in ATIME(log n). We also extend the method of proof to investigate the complexity of the word problem for a fixed permutation group and show that polynomial size circuits of width 4 also recognize exactly nonuniform NC1

    Logic Meets Algebra: the Case of Regular Languages

    Full text link
    The study of finite automata and regular languages is a privileged meeting point of algebra and logic. Since the work of Buchi, regular languages have been classified according to their descriptive complexity, i.e. the type of logical formalism required to define them. The algebraic point of view on automata is an essential complement of this classification: by providing alternative, algebraic characterizations for the classes, it often yields the only opportunity for the design of algorithms that decide expressibility in some logical fragment. We survey the existing results relating the expressibility of regular languages in logical fragments of MSO[S] with algebraic properties of their minimal automata. In particular, we show that many of the best known results in this area share the same underlying mechanics and rely on a very strong relation between logical substitutions and block-products of pseudovarieties of monoid. We also explain the impact of these connections on circuit complexity theory.Comment: 37 page

    Unitary Branching Programs: Learnability and Lower Bounds

    Get PDF
    Bounded width branching programs are a formalism that can be used to capture the notion of non-uniform constant-space computation. In this work, we study a generalized version of bounded width branching programs where instructions are defined by unitary matrices of bounded dimension. We introduce a new learning framework for these branching programs that leverages on a combination of local search techniques with gradient descent over Riemannian manifolds. We also show that gapped, read-once branching programs of bounded dimension can be learned with a polynomial number of queries in the presence of a teacher. Finally, we provide explicit near-quadratic size lower-bounds for bounded-dimension unitary branching programs, and exponential size lower-bounds for bounded-dimension read-once gapped unitary branching programs. The first lower bound is proven using a combination of Neciporuk’s lower bound technique with classic results from algebraic geometry. The second lower bound is proven within the framework of communication complexity theory.publishedVersio

    On the Power and Limitations of Branch and Cut

    Get PDF
    The Stabbing Planes proof system [Paul Beame et al., 2018] was introduced to model the reasoning carried out in practical mixed integer programming solvers. As a proof system, it is powerful enough to simulate Cutting Planes and to refute the Tseitin formulas - certain unsatisfiable systems of linear equations od 2 - which are canonical hard examples for many algebraic proof systems. In a recent (and surprising) result, Dadush and Tiwari [Daniel Dadush and Samarth Tiwari, 2020] showed that these short refutations of the Tseitin formulas could be translated into quasi-polynomial size and depth Cutting Planes proofs, refuting a long-standing conjecture. This translation raises several interesting questions. First, whether all Stabbing Planes proofs can be efficiently simulated by Cutting Planes. This would allow for the substantial analysis done on the Cutting Planes system to be lifted to practical mixed integer programming solvers. Second, whether the quasi-polynomial depth of these proofs is inherent to Cutting Planes. In this paper we make progress towards answering both of these questions. First, we show that any Stabbing Planes proof with bounded coefficients (SP*) can be translated into Cutting Planes. As a consequence of the known lower bounds for Cutting Planes, this establishes the first exponential lower bounds on SP*. Using this translation, we extend the result of Dadush and Tiwari to show that Cutting Planes has short refutations of any unsatisfiable system of linear equations over a finite field. Like the Cutting Planes proofs of Dadush and Tiwari, our refutations also incur a quasi-polynomial blow-up in depth, and we conjecture that this is inherent. As a step towards this conjecture, we develop a new geometric technique for proving lower bounds on the depth of Cutting Planes proofs. This allows us to establish the first lower bounds on the depth of Semantic Cutting Planes proofs of the Tseitin formulas

    Complexity Theory

    Get PDF
    [no abstract available

    Design and analysis of sequential and parallel single-source shortest-paths algorithms

    Get PDF
    We study the performance of algorithms for the Single-Source Shortest-Paths (SSSP) problem on graphs with n nodes and m edges with nonnegative random weights. All previously known SSSP algorithms for directed graphs required superlinear time. Wie give the first SSSP algorithms that provably achieve linear O(n-m)average-case execution time on arbitrary directed graphs with random edge weights. For independent edge weights, the linear-time bound holds with high probability, too. Additionally, our result implies improved average-case bounds for the All-Pairs Shortest-Paths (APSP) problem on sparse graphs, and it yields the first theoretical average-case analysis for the "Approximate Bucket Implementation" of Dijkstra\u27s SSSP algorithm (ABI-Dijkstra). Futhermore, we give constructive proofs for the existence of graph classes with random edge weights on which ABI-Dijkstra and several other well-known SSSP algorithms require superlinear average-case time. Besides the classical sequential (single processor) model of computation we also consider parallel computing: we give the currently fastest average-case linear-work parallel SSSP algorithms for large graph classes with random edge weights, e.g., sparse rondom graphs and graphs modeling the WWW, telephone calls or social networks.In dieser Arbeit untersuchen wir die Laufzeiten von Algorithmen fĂŒr das KĂŒrzeste-Wege Problem (Single-Source Shortest-Paths, SSSP) auf Graphen mit n Knoten, M Kanten und nichtnegativen zufĂ€lligen Kantengewichten. Alle bisherigen SSSP Algorithmen benötigen auf gerichteten Graphen superlineare Zeit. Wir stellen den ersten SSSP Algorithmus vor, der auf beliebigen gerichteten Graphen mit zufĂ€lligen Kantengewichten eine beweisbar lineare average-case-KomplexitĂ€t O(n+m)aufweist. Sind die Kantengewichte unabhĂ€ngig, so wird die lineare Zeitschranke auch mit hoher Wahrscheinlichkeit eingehalten. Außerdem impliziert unser Ergebnis verbesserte average-case-Schranken fĂŒr das All-Pairs Shortest-Paths (APSP) Problem auf dĂŒnnen Graphen und liefert die erste theoretische average-case-Analyse fĂŒr die "Approximate Bucket Implementierung" von Dijkstras SSSP Algorithmus (ABI-Dijkstra). Weiterhin fĂŒhren wir konstruktive Existenzbeweise fĂŒr Graphklassen mit zufĂ€lligen Kantengewichten, auf denen ABI-Dijkstra und mehrere andere bekannte SSSP Algorithmen durchschnittlich superlineare Zeit benötigen. Neben dem klassischen seriellen (Ein-Prozessor) Berechnungsmodell betrachten wir auch Parallelverarbeitung; fĂŒr umfangreiche Graphklassen mit zufĂ€lligen Kantengewichten wie z.B. dĂŒnne Zufallsgraphen oder Modelle fĂŒr das WWW, Telefonanrufe oder soziale Netzwerke stellen wir die derzeit schnellsten parallelen SSSP Algorithmen mit durchschnittlich linearer Arbeit vor

    Superlinear Lower Bounds Based on ETH

    Get PDF
    • 

    corecore