74 research outputs found

    Superior Exploration-Exploitation Balance with Quantum-Inspired Hadamard Walks

    Full text link
    This paper extends the analogies employed in the development of quantum-inspired evolutionary algorithms by proposing quantum-inspired Hadamard walks, called QHW. A novel quantum-inspired evolutionary algorithm, called HQEA, for solving combinatorial optimization problems, is also proposed. The novelty of HQEA lies in it's incorporation of QHW Remote Search and QHW Local Search - the quantum equivalents of classical mutation and local search, that this paper defines. The intuitive reasoning behind this approach, and the exploration-exploitation balance thus occurring is explained. From the results of the experiments carried out on the 0,1-knapsack problem, HQEA performs significantly better than a conventional genetic algorithm, CGA, and two quantum-inspired evolutionary algorithms - QEA and NQEA, in terms of convergence speed and accuracy.Comment: 2 pages, 2 figures, 1 table, late-breakin

    Angles and devices for quantum approximate optimization

    Get PDF
    A potential application of emerging Noisy Intermediate-Scale Quantum (NISQ) devices is that of approximately solving combinatorial optimization problems. This thesis investigates a gate-based algorithm for this purpose, the Quantum Approximate Optimization Algorithm (QAOA), in two major themes. First, we examine how the QAOA resolves the problems it is designed to solve. We take a statistical view of the algorithm applied to ensembles of problems, first, considering a highly symmetric version of the algorithm, using Grover drivers. In this highly symmetric context, we find a simple dependence of the QAOA state’s expected value on how values of the cost function are distributed. Furthering this theme, we demonstrate that, generally, QAOA performance depends on problem statistics with respect to a metric induced by a chosen driver Hamiltonian. We obtain a method for evaluating QAOA performance on worst-case problems, those of random costs, for differing driver choices. Second, we investigate a QAOA context with device control occurring only via single-qubit gates, rather than using individually programmable one- and two-qubit gates. In this reduced control overhead scheme---the digital-analog scheme---the complexity of devices running QAOA circuits is decreased at the cost of errors which are shown to be non-harmful in certain regimes. We then explore hypothetical device designs one could use for this purpose.Eine mögliche Anwendung für “Noisy Intermediate-Scale Quantum devices” (NISQ devices) ist die näherungsweise Lösung von kombinatorischen Optimierungsproblemen. Die vorliegende Arbeit untersucht anhand zweier Hauptthemen einen gatterbasierten Algorithmus, den sogenannten “Quantum Approximate Optimization Algorithm” (QAOA). Zuerst prüfen wir, wie der QAOA jene Probleme löst, für die er entwickelt wurde. Wir betrachten den Algorithmus in einer Kombination mit hochsymmetrischen Grover-Treibern für statistische Ensembles von Probleminstanzen. In diesem Kontext finden wir eine einfache Abhängigkeit von der Verteilung der Kostenfunktionswerte. Weiterführend zeigen wir, dass die QAOA-Leistung generell von der Problemstatistik in Bezug auf eine durch den gewählten Treiber-Hamiltonian induzierte Metrik abhängt. Wir erhalten eine Methode zur Bewertung der QAOA-Leistung bei schwersten Problemen (solche zufälliger Kosten) für unterschiedliche Treiberauswahlen. Zweitens untersuchen wir eine QAOA-Variante, bei der sich die Hardware- Kontrolle nur auf Ein-Qubit-Gatter anstatt individuell programmierbare Ein- und Zwei-Qubit-Gatter erstreckt. In diesem reduzierten Kontrollaufwandsschema—dem digital-analogen Schema—sinkt die Komplexität der Hardware, welche die QAOASchaltungen ausführt, auf Kosten von Fehlern, die in bestimmten Bereichen als ungefährlich nachgewiesen werden. Danach erkunden wir hypothetische Hardware- Konzepte, die für diesen Zweck genutzt werden könnten

    Understanding Quantum Technologies 2022

    Full text link
    Understanding Quantum Technologies 2022 is a creative-commons ebook that provides a unique 360 degrees overview of quantum technologies from science and technology to geopolitical and societal issues. It covers quantum physics history, quantum physics 101, gate-based quantum computing, quantum computing engineering (including quantum error corrections and quantum computing energetics), quantum computing hardware (all qubit types, including quantum annealing and quantum simulation paradigms, history, science, research, implementation and vendors), quantum enabling technologies (cryogenics, control electronics, photonics, components fabs, raw materials), quantum computing algorithms, software development tools and use cases, unconventional computing (potential alternatives to quantum and classical computing), quantum telecommunications and cryptography, quantum sensing, quantum technologies around the world, quantum technologies societal impact and even quantum fake sciences. The main audience are computer science engineers, developers and IT specialists as well as quantum scientists and students who want to acquire a global view of how quantum technologies work, and particularly quantum computing. This version is an extensive update to the 2021 edition published in October 2021.Comment: 1132 pages, 920 figures, Letter forma

    Evolutionary games on graphs

    Full text link
    Game theory is one of the key paradigms behind many scientific disciplines from biology to behavioral sciences to economics. In its evolutionary form and especially when the interacting agents are linked in a specific social network the underlying solution concepts and methods are very similar to those applied in non-equilibrium statistical physics. This review gives a tutorial-type overview of the field for physicists. The first three sections introduce the necessary background in classical and evolutionary game theory from the basic definitions to the most important results. The fourth section surveys the topological complications implied by non-mean-field-type social network structures in general. The last three sections discuss in detail the dynamic behavior of three prominent classes of models: the Prisoner's Dilemma, the Rock-Scissors-Paper game, and Competing Associations. The major theme of the review is in what sense and how the graph structure of interactions can modify and enrich the picture of long term behavioral patterns emerging in evolutionary games.Comment: Review, final version, 133 pages, 65 figure

    Quantum walks and topological phenomena with structured light

    Get PDF
    The manipulation of the spatial structure of a light beam has many application in both classical and quantum physics. The possibility to exploit high dimensional degrees of freedom carried by a light beam can be employed, among the various applications, for simulating the dynamics on quantum particles in multidimensional spaces. Coupling these degrees of freedom, like the orbital angular momentum or the transverse linear momentum, with the polarization of light (also associated with the spin) allows to implement quantum walks on one and two dimensional lattices. This work presents a series of experiments where these implementations of photonic quantum walks were realized exploiting patterned liquid crystal devices. In particular, the experimental setup allows to investigate interesting effects of the non-trivial topological features of the simulated processes, and test methods for the experimental measurement of topological invariants. This research has also led to the introduction of a novel method of characterizing unknown structured light beams and to the study of the stability of polarization singularities in laser beams

    Spokane Intercollegiate Research Conference 2016

    Get PDF

    Applied Metaheuristic Computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC
    • …
    corecore