51 research outputs found

    Unitary differential space-time-frequency codes for MB-OFDM UWB

    Get PDF
    In a multiple-input multiple-output (MIMO) multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband (UWB) system, coherent detection where the channel state information (CSI) is assumed to be exactly known at the receiver requires the transmission of a large number of symbols for channel estimation, thus reducing the bandwidth efficiency. This paper examines the use of unitary differential space-time frequency codes (DSTFCs) in MB-OFDM UWB, which increases the system bandwidth efficiency due to the fact that no CSI is required for differential detection. The proposed DSTFC MB-OFDM system would be useful when the transmission of multiple channel estimation symbols is impractical or uneconomical. Simulation results show that the application of DSTFCs can significantly improve the bit error performance of conventional differential MB-OFDM system (without MIMO). ©2009 IEEE

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Unitary Differential Space-Time-Frequency Codes for MB-OFDM UWB Wireless Communications

    Full text link

    Report on Radio Frequency Compatibility Measurements between UWB LDC Devices and Mobile WiMAX (IEEE 802.16e-2005) BWA Systems

    Get PDF
    In 2006 the ECC examined the impact of pulsed Low-Duty Cycle (LDC) UWB signals on the quality of various services (FTP, VoIP, video streaming) provided via a fixed WiMAX (IEEE802.16d) link, and published its findings in ECC Report 94 [1] . The resulting spectrum regulation and standardization stipulate a maximum UWB activity (Ton) of 50 ms per second, with a maximum permissible pulse width of 5 ms. Report 94 showed that for activity factors of 5% there was no measurable impact on any of the victim services if a minimum distance of 4 meters (LOS) between the UWB interferer and the WiMAX terminal was maintained. As fixed WiMAX terminals are typically mounted outdoors in elevated positions the isolation between a WiMAX terminal and LDC UWB devices will in most cases be sufficiently high to avoid interference. Mobile WiMAX (IEEE802.16e-2005) terminals, however, may be operating indoors, in close vicinity to a UWB device. On the other hand, mobile WiMAX was designed to be more robust against fading and interference than fixed WiMAX. The objective of the measurement campaign described in this document was to determine the impact of UWB LDC signals on different types of services provided by a mobile WiMAX (IEEE802.16e-2005, further on referred to as “WiMAX”) victim system, and in particular to examine LDC pulses with a width of more than 5 ms, whilst maintaining an overall activity limit of 5%, equalling 50 ms per second.JRC.DG.G.6-Security technology assessmen

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Localization and Tracking in Wireless MIMO Systems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Millimetre-Wave Fibre-Wireless Technologies for 5G Mobile Fronthaul

    Get PDF
    The unprecedented growth in mobile data traffic, driven primarily by bandwidth rich applications and high definition video is accelerating the development of fifth generation (5G) mobile network. As mobile access network evolves towards centralisation, mobile fronthaul (MFH) architecture becomes essential in providing high capacity, ubiquitous and yet affordable services to subscribers. In order to meet the demand for high data rates in the access, Millimetre-wave (mmWave) has been highlighted as an essential technology in the development of 5G-new radio (5G-NR). In the present MFH architecture which is typically based on common public radio interface (CPRI) protocol, baseband signals are digitised before fibre transmission, featuring high overhead data and stringent synchronisation requirements. A direct application of mmWave 5G-NR to CPRI digital MFH, where signal bandwidth is expected to be up to 1GHz will be challenging, due to the increased complexity of the digitising interface and huge overhead data that will be required for such bandwidth. Alternatively, radio over fibre (RoF) technique can be employed in the transportation of mmWave wireless signals via the MFH link, thereby avoiding the expensive digitisation interface and excessive overhead associated with its implementation. Additionally, mmWave carrier can be realised with the aid of photonic components employed in the RoF link, further reducing the system complexity. However, noise and nonlinearities inherent to analog transmission presents implementation challenges, limiting the system dynamic range. Therefore, it is important to investigate the effects of these impairments in RoF based MFH architecture. This thesis presents extensive research on the impact of noise and nonlinearities on 5G candidate waveforms, in mmWave 5G fibre wireless MFH. Besides orthogonal frequency division multiplexing (OFDM), another radio access technology (RAT) that has received significant attention is filter bank multicarrier (FBMC), particularly due to its high spectral containment and excellent performance in asynchronous transmission. Hence, FBMC waveform is adopted in this work to study the impact of noise and nonlinearities on the mmWave fibre-wireless MFH architecture. Since OFDM is widely deployed and it has been adopted for 5G-NR, the performance of OFDM and FBMC based 5G mmWave RAT in fibre wireless MFH architecture is compared for several implementations and transmission scenarios. To this extent, an end to end transmission testbed is designed and implemented using industry standard VPI Transmission Maker® to investigate five mmWave upconversion techniques. Simulation results show that the impact of noise is higher in FBMC when the signal to-noise (SNR) is low, however, FBMC exhibits better performance compared to OFDM as the SNR improved. More importantly, an evaluation of the contribution of each noise component to the overall system SNR is carried out. It is observed in the investigation that noise contribution from the optical carriers employed in the heterodyne upconversion of intermediate frequency (IF) signals to mmWave frequency dominate the system noise. An adaptive modulation technique is employed to optimise the system throughput based on the received SNR. The throughput of FBMC based system reduced significantly compared to OFDM, due to laser phase noise and chromatic dispersion (CD). Additionally, it is shown that by employing frequency domain averaging technique to enhance the channel estimation (CE), the throughput of FBMC is significantly increased and consequently, a comparable performance is obtained for both waveforms. Furthermore, several coexistence scenarios for multi service transmission are studied, considering OFDM and FBMC based RATs to evaluate the impact inter band interference (IBI), due to power amplifier (PA) nonlinearity on the system performance. The low out of band (OOB) emission in FBMC plays an important role in minimising IBI to adjacent services. Therefore, FBMC requires less guardband in coexistence with multiple services in 5G fibre-wireless MFH. Conversely, OFDM introduced significant OOB to adjacent services requiring large guardband in multi-service coexistence transmission scenario. Finally, a novel transmission scheme is proposed and investigated to simultaneously generate multiple mmWave signals using laser heterodyning mmWave upconversion technique. With appropriate IF and optical frequency plan, several mmWave signals can be realised. Simulation results demonstrate successful simultaneous realisation of 28GHz, 38GHz, and 60GHz mmWave signals
    corecore