22 research outputs found

    Computational Engineering

    Get PDF
    The focus of this Computational Engineering Workshop was on the mathematical foundation of state-of-the-art and emerging finite element methods in engineering analysis. The 52 participants included mathematicians and engineers with shared interest on discontinuous Galerkin or Petrov-Galerkin methods and other generalized nonconforming or mixed finite element methods

    Finite Element Methods for Fourth Order Variational Inequalities

    Get PDF
    In this work we study finite element methods for fourth order variational inequalities. We begin with two model problems that lead to fourth order obstacle problems and a brief survey of finite element methods for these problems. Then we review the fundamental results including Sobolev spaces, existence and uniqueness results of variational inequalities, regularity results for biharmonic problems and fourth order obstacle problems, and finite element methods for the biharmonic problem. In Chapter 2 we also include three types of enriching operators which are useful in the convergence analysis. In Chapter 3 we study finite element methods for the displacement obstacle problem of clamped Kirchhoff plates. A unified convergence analysis is provided for C1C^1 finite element methods, classical nonconforming finite element methods and C0C^0 interior penalty methods. The key ingredient in the error analysis is the introduction of the auxiliary obstacle problem. An optimal O(h)O(h) error estimate in the energy norm is obtained for convex domains. We also address the approximations of the coincidence set and the free boundary. In Chapter 4 we study a Morley finite element method and a quadratic C0C^0 interior penalty method for the displacement obstacle problem of clamped Kirchhoff plates with general Dirichlet boundary conditions on general polygonal domains. We prove the magnitudes of the errors in the energy norm and the LL^{\infty} norm are O(hα)O(h^{\alpha}), where α3˘e1/2\alpha \u3e 1/2 is determined by the interior angles of the polygonal domain. Numerical results are also presented to illustrate the performance of the methods and verify the theoretical results obtained in Chapter 3 and Chapter 4. In Chapter 5 we consider an elliptic optimal control problem with state constraints. By formulating the problem as a fourth order obstacle problem with the boundary condition of simply supported plates, we study a quadratic C0C^0 interior penalty method and derive the error estimates in the energy norm based on the framework we introduced in Chapter 3. The rate of convergence is derived for both quasi-uniform meshes and graded meshes. Numerical results presented in this chapter confirm our theoretical results

    Self-Adaptive Methods for PDE

    Get PDF
    [no abstract available

    Adaptive low and high-order hybridized methods for unsteady incompressible flow simulations

    Get PDF
    Tesi en modalitat de cotutela: Universitat Politècnica de Catalunya i Università degli Studi di PaviaSimulations of incompressible flows are performed on a daily basis to solve problems of practical and industrial interest in several fields of engineering, including automotive, aeronautical, mechanical and biomedical applications. Although finite volume (FV) methods are still the preferred choice by the industry due to their efficiency and robustness, sensitivity to mesh quality and limited accuracy represent two main bottlenecks of these approaches. This is especially critical in the context of transient phenomena, in which FV methods show excessive numerical diffusion. In this context, there has been a growing interest towards high-order discretisation strategies in last decades. In this PhD thesis, a high-order adaptive hybidisable discontinuous Galerkin (HDG) method is proposed for the approximation of steady and unsteady laminar incompressible Navier-Stokes equations. Voigt notation for symmetric second-order tensors is exploited to devise an HDG method for the Cauchy formulation of the momentum equation with optimal convergence properties, even when low-order polynomial degrees of approximation are considered. In addition, a postprocessing strategy accounting for rigid translational and rotational modes is proposed to construct an element-by-element superconvergent velocity field. The discrepancy between the computed and postprocessed velocities is utilised to define a local error indicator to drive degree adaptivity procedures and accurately capture localised features of the flow. The resulting HDG solver is thus extended to the case of transient problems via high-order time integration schemes, namely the explicit singly diagonal implicit Runge-Kutta (ESDIRK) schemes. In this context, the embedded explicit step is exploited to define an inexpensive estimate of the temporal error to devise an efficient timestep control strategy. Finally, in order to efficiently solve the global problem arising from the HDG discretisation, a preconditioned iterative solver is proposed. This is critical in the context of high-order approximations in three-dimensional domains leading to large-scale problems, especially in transient simulations. A block diagonal preconditioner coupled with an inexpensive approximation of the Schur complement of the matrix is proposed to reduce the computational cost of the overall HDG solver. Extensive numerical validation of two and three-dimensional steady and unsteady benchmark tests of viscous laminar incompressible flows is performed to validate the proposed methodology.Simulaciones de flujo incompresible se emplean a diario para resolver problemas de interés práctico e industrial en varios campos de la ingeniería, p.ej. en aplicaciones automovilísticas, aeronáuticas, mecánicas y biomédicas. Aunque los métodos de volúmenes finitos (FV) siguen siendo la opción preferida por la industria debido a su eficiencia y robustez, la sensibilidad a la calidad de la malla y la baja precisión representan dos limitaciones importantes para estas técnicas. Estas limitaciones son todavía más críticas en el contexto de simulaciones de fenómenos transitorios, donde los FV están penalizados por su excesiva difusión numérica. En este contexto, las estrategias de discretización de alto orden han ganado una popularidad creciente en las últimas décadas para problemas transitorios dónde se necesitan soluciones precisas. Esta tesis propone un método de Galerkin discontinuo híbrido (HDG), de alto orden y adaptativo para la aproximación de las ecuaciones de Navier-Stokes incomprensible laminar, en el caso estacionario y transitorio en el entorno de aplicaciones ingenieriles. Para ello, la notación de Voigt para tensores simétricos de segundo orden (habituales en mecánica de los medios continuos) permite introducir un método HDG para la formulación de Cauchy de la ecuación de momento. La novedad de este resultado reside en la convergencia óptima alcanzada por el método, incluso para aproximaciones de orden polinómico bajo. Además, se desarrolla una estrategia de post-proceso local para construir elemento a elemento un campo de velocidad súper-convergente, tomando en cuenta los modos rígidos de traslación y rotación. La discrepancia entre el campo de velocidad calculado y el súper-convergente, obtenido a través del post-proceso, permite definir un indicador del error local. De esta forma, se desarrolla una estrategia para realizar adecuar elemento a elemento el grado de la aproximación polinómica y así mejorar la precisión adaptándose a las características localizadas del flujo. Seguidamente, se extiende el método HDG propuesto al tratamiento de problemas dependientes del tiempo. Más concretamente, se consideran los esquemas de integración temporal de alto orden explicit singly diagonal implicit Runge-Kutta (ESDIRK). En este contexto, se utiliza el paso explícito embedded para calcular una estimación computacionalmente eficiente del error temporal y definir una estrategia de adaptividad del paso de tiempo. Finalmente, se desarrolla un precondicionador adaptado a la estrategia HDG que acelera la convergencia del método iterativo empleado y, de esta forma, obtener resoluciones eficaces del problema global surgido de la discretización HDG. Es importante resaltar la importancia de una herramienta de resolución eficiente para problemas de gran escala en el contexto de aproximaciones de alto orden y en dominios tridimensionales. Estas herramientas se hacen aún más criticas en simulaciones transitorias. Más concretamente, se proponen un precondicionador diagonal por bloques y una aproximación eficiente del complemento Schur de la matriz para reducir el coste computacional del método HDG. Para validar la metodología propuesta, se realizan varias simulaciones numéricas de flujo incompresible laminar viscoso, para problemas estacionarios y transitorios, en dos y tres dimensiones.Postprint (published version

    Numerical analysis for the pure Neumann control problem using the gradient discretisation method

    Full text link
    The article discusses the gradient discretisation method (GDM) for distributed optimal control problems governed by diffusion equation with pure Neumann boundary condition. Using the GDM framework enables to develop an analysis that directly applies to a wide range of numerical schemes, from conforming and non-conforming finite elements, to mixed finite elements, to finite volumes and mimetic finite differences methods. Optimal order error estimates for state, adjoint and control variables for low order schemes are derived under standard regularity assumptions. A novel projection relation between the optimal control and the adjoint variable allows the proof of a super-convergence result for post-processed control. Numerical experiments performed using a modified active set strategy algorithm for conforming, nonconforming and mimetic finite difference methods confirm the theoretical rates of convergence

    Computational Engineering

    Get PDF
    This Workshop treated a variety of finite element methods and applications in computational engineering and expanded their mathematical foundation in engineering analysis. Among the 53 participants were mathematicians and engineers with focus on mixed and nonstandard finite element schemes and their applications

    A posteriori Error Estimators based on Duality Techniques from the Calculus of Variations

    Get PDF
    A theoretical framework is presented within which we can systematically develop a posteriori error estimators for a quite general class of variational statements, involving a linear operator and two convex functionals. We merely require, that the linear operator be coercive and the corresponding functional be uniformly convex. As the second functional may be arbitrary, the theory can also cover constrained variational formulations. Two applications are discussed in detail: the Dirichlet Problem and the Obstacle Problem. A number of technical issues is considered, which pertain to the evaluation of the proposed error bounds using finite element methods: Inter alia a novel non-conforming discretisation scheme for the dual formulation is analysed. The resulting algebraic problem may be solved by a new preconditioned relaxation method, for which a proof of convergence is supplied
    corecore