32 research outputs found

    Uniform L∞L^\infty-bounds for energy-conserving higher-order time integrators for the Gross-Pitaevskii equation with rotation

    Full text link
    In this paper, we consider an energy-conserving continuous Galerkin discretization of the Gross-Pitaevskii equation with a magnetic trapping potential and a stirring potential for angular momentum rotation. The discretization is based on finite elements in space and time and allows for arbitrary polynomial orders. It was first analyzed in [O. Karakashian, C. Makridakis; SIAM J. Numer. Anal. 36(6):1779-1807, 1999] in the absence of potential terms and corresponding a priori error estimates were derived in 2D. In this work we revisit the approach in the generalized setting of the Gross-Pitaevskii equation with rotation and we prove uniform L∞L^\infty-bounds for the corresponding numerical approximations in 2D and 3D without coupling conditions between the spatial mesh size and the time step size. With this result at hand, we are in particular able to extend the previous error estimates to the 3D setting while avoiding artificial CFL conditions

    HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method in MATLAB

    Get PDF
    This paper presents HDGlab, an open source MATLAB implementation of the hybridisable discontinuous Galerkin (HDG) method. The main goal is to provide a detailed description of both the HDG method for elliptic problems and its implementation available in HDGlab. Ultimately, this is expected to make this relatively new advanced discretisation method more accessible to the computational engineering community. HDGlab presents some features not available in other implementations of the HDG method that can be found in the free domain. First, it implements high-order polynomial shape functions up to degree nine, with both equally-spaced and Fekete nodal distributions. Second, it supports curved isoparametric simplicial elements in two and three dimensions. Third, it supports non-uniform degree polynomial approximations and it provides a flexible structure to devise degree adaptivity strategies. Finally, an interface with the open-source high-order mesh generator Gmsh is provided to facilitate its application to practical engineering problems

    The DPG-star method

    Get PDF
    This article introduces the DPG-star (from now on, denoted DPG∗^*) finite element method. It is a method that is in some sense dual to the discontinuous Petrov-Galerkin (DPG) method. The DPG methodology can be viewed as a means to solve an overdetermined discretization of a boundary value problem. In the same vein, the DPG∗^* methodology is a means to solve an underdetermined discretization. These two viewpoints are developed by embedding the same operator equation into two different saddle-point problems. The analyses of the two problems have many common elements. Comparison to other methods in the literature round out the newly garnered perspective. Notably, DPG∗^* and DPG methods can be seen as generalizations of LL∗\mathcal{L}\mathcal{L}^\ast and least-squares methods, respectively. A priori error analysis and a posteriori error control for the DPG∗^* method are considered in detail. Reports of several numerical experiments are provided which demonstrate the essential features of the new method. A notable difference between the results from the DPG∗^* and DPG analyses is that the convergence rates of the former are limited by the regularity of an extraneous Lagrange multiplier variable

    A space-time continuous finite element method for 2D viscoelastic wave equation

    Get PDF
    International audienceA widespread approach to software service analysis uses session types. Very different type theories for binary and multiparty protocols have been developed; establishing precise connections between them remains an open problem. We present the first formal relation between two existing theories of binary and multiparty session types: a binary system rooted in linear logic, and a multiparty system based on automata theory. Our results enable the analysis of multiparty protocols using a (much simpler) type theory for binary protocols, ensuring protocol fidelity and deadlock-freedom. As an application, we offer the first theory of multiparty session types with behavioral genericity. This theory is natural and powerful; its analysis techniques reuse results for binary session types

    Operator compression with deep neural networks

    Get PDF

    Quantum Relaxation Method for Linear Systems in Finite Element Problems

    Full text link
    Quantum linear system algorithms (QLSAs) for gate-based quantum computing can provide exponential speedups for linear systems of equations. The growth of the condition number with problem size for a system of equations arising from a finite element discretization inhibits the direct application of QLSAs for a speedup. Furthermore, QLSAs cannot use an approximate solution or initial guess to output an improved solution. Here, we present Quantum Relaxation for Linear System (qRLS), as an iterative approach for gate-based quantum computers by embedding linear stationary iterations into a larger block linear system. The block linear system is positive-definite and its condition number scales linearly with the number of iterations independent of the size and condition number of the original system, effectively managing the condition number of the finite element problem. The well-conditioned system enables a practical iterative solution of finite element problems using the state-of-the-art Quantum Signal Processing (QSP) variant of QLSAs. Using positive-definite QLSAs l iterations can be performed in O(\sqrt{l}) time, which is unattainable on classical computers. The complexity of the iterations scales favorably compared to classical architectures due to solution time scaling independent of system size with O(\log(N)) qubits, an exponential improvement opening a new paradigm for iterative finite element solutions on quantum hardware
    corecore