899 research outputs found

    HTS pulse-stretcher and second order modulator: design and first results

    Get PDF
    One of the remaining challenges in the application of superconducting electronics is the interfacing between superconducting and semiconducting environments. The voltage and speed mismatch between RSFQ pulses and semiconducting read-out electronics makes it necessary to amplify as well as stretch the RSFQ pulses. Moreover, circuits based on HTS (High Temperature Superconductor) technology are very attractive since they can operate under considerably relaxed cooling effort, which is one of the main problems with LTS (Low Temperature Superconductor) circuits. Within the European project SuperADC, a HTS second order sigma delta modulator and a pulse stretcher, used as an interface between the modulator and the first semi-conducting amplifier stage, have been designed at Twente University and will be presented here

    Superconducting electronics

    Get PDF
    During the last decades superconducting electronics has been the most prominent area of research for small scale applications of superconductivity. It has experienced quite a stormy development, from individual low frequency devices to devices with high integration density and pico second switching time. Nowadays it offers small losses, high speed and the potential for large scale integration and is superior to semiconducting devices in many ways Âż apart from the need for cooling by liquid helium for devices based on classical superconductors like niobium, or cooling by liquid nitrogen or cryocoolers (40K to 77K) for high-Tc superconductors like YBa2Cu3O7. This article gives a short overview over the current state of the art on typical devices out of the main application areas of superconducting electronics
    • …
    corecore