11,877 research outputs found

    High-fidelity two-qubit gates of hybrid superconducting-semiconducting singlet-triplet qubits

    Full text link
    Hybrid systems comprising superconducting and semiconducting materials are promising architectures for quantum computing. Superconductors induce long-range interactions between the spin degrees of freedom of semiconducting quantum dots. These interactions are widely anisotropic when the semiconductor material has strong spin-orbit interactions. We show that this anisotropy is tunable and enables fast and high-fidelity two-qubit gates between singlet-triplet (ST) spin qubits. Our design is immune to leakage of the quantum information into non-computational states and removes always-on interactions between the qubits, thus resolving key open challenges for these architectures. Our ST qubits do not require additional technologically-demanding components nor fine-tuning of parameters. They operate at low magnetic fields of a few milli Tesla and are fully compatible with superconductors. In realistic devices, we estimate infidelities below 10−310^{-3}, that could pave the way toward large-scale hybrid superconducting-semiconducting quantum processors

    Large-scale quantum hybrid solution for linear systems of equations

    Full text link
    State-of-the-art noisy intermediate-scale quantum devices (NISQ), although imperfect, enable computational tasks that are manifestly beyond the capabilities of modern classical supercomputers. However, present quantum computations are restricted to exploring specific simplified protocols, whereas the implementation of full-scale quantum algorithms aimed at solving concrete large scale problems arising in data analysis and numerical modelling remains a challenge. Here we introduce and implement a hybrid quantum algorithm for solving linear systems of equations with exponential speedup, utilizing quantum phase estimation, one of the exemplary core protocols for quantum computing. We introduce theoretically classes of linear systems that are suitable for current generation quantum machines and solve experimentally a 2172^{17}-dimensional problem on superconducting IBMQ devices, a record for linear system solution on quantum computers. The considered large-scale algorithm shows superiority over conventional solutions, demonstrates advantages of quantum data processing via phase estimation and holds high promise for meeting practically relevant challenges.Comment: 8 pages, 6 figure

    Scalable Ion Trap Quantum Computing without Moving Ions

    Full text link
    A hybrid quantum computing scheme is studied where the hybrid qubit is made of an ion trap qubit serving as the information storage and a solid-state charge qubit serving as the quantum processor, connected by a superconducting cavity. In this paper, we extend our previous work [1] and study the decoherence, coupling and scalability of the hybrid system. We present our calculations of the decoherence of the coupled ion - charge system due to the charge fluctuations in the solid-state system and the dissipation of the superconducting cavity under laser radiation. A gate scheme that exploits rapid state flips of the charge qubit to reduce decoherence by the charge noise is designed. We also study a superconducting switch that is inserted between the cavity and the charge qubit and provides tunable coupling between the qubits. The scalability of the hybrid scheme is discussed together with several potential experimental obstacles in realizing this scheme

    Atomic-Scale Interface Engineering of Majorana Edge Modes in a 2D Magnet-Superconductor Hybrid System

    Get PDF
    Topological superconductors are predicted to harbor exotic boundary states - Majorana zero-energy modes - whose non-Abelian braiding statistics present a new paradigm for the realization of topological quantum computing. Using low-temperature scanning tunneling spectroscopy (STS), we here report on the direct real-space visualization of chiral Majorana edge states in a monolayer topological superconductor, a prototypical magnet-superconductor hybrid system comprised of nano-scale Fe islands of monoatomic height on a Re(0001)-O(2×\times1) surface. In particular, we demonstrate that interface engineering by an atomically thin oxide layer is crucial for driving the hybrid system into a topologically non-trivial state as confirmed by theoretical calculations of the topological invariant, the Chern number.Comment: 26 pages, 9 figure
    • …
    corecore