4 research outputs found

    A Novel Clustering Tree-based Video lookup Strategy for Supporting VCR-like Operations in MANETs

    Get PDF
    Mobile Peer-to-Peer (MP2P) network is a promising avenue for large-scale deployment of Video-on-Demand (VoD) applications over mobile ad-hoc networks (MANETs). In P2P VoD systems, fast search for resources is key determinants for improving the Quality of Service (QoS) due to the low delay of seeking resources caused by streaming interactivity. In this paper, we propose a novel Clustering Tree-based Video Lookup strategy for supporting VCR-like operations in MANETs (CTVL) CTVL selects the chunks with the high popularity as "overlay router" chunks to build the "virtual connection" with other chunks in terms of the popularities and external connection of video chunks. CTVL designs a new clustering strategy to group nodes in P2P networks and a maintenance mechanism of cluster structure, which achieves the high system scalability and fast resource search performance. Thorough simulation results also show how CTVL achieves higher average lookup success rate, lower maintenance cost, lower average end-to-end delay and lower packet loss ratio (PLR) in comparison with other state of the art solutions

    Location-aware mechanism for efficient video delivery over wireless mesh networks

    Get PDF
    Due to their flexibility, ease of use, low-cost and fast deployment, wireless Mesh Networks have been widely accepted as an alternative to wired network for last-mile connectivity. When used in conjunction with Peer-to-Peer data transfer solutions, many innovative applications and services such as distributed storage, resource sharing, live TV broadcasting or Video on Demand can be supported without any centralized administration. However, in order to achieve a good quality of service in such variable, error-prone and resource-constrained wireless multi-hop environments, it is important that the associated Peer-to-Peer overlay is not only aware of the availability, but also of the location and available path link quality of its peers and services. This thesis proposes a wireless location-aware Chord-based overlay mechanism for Wireless Mesh Networks (WILCO) based on a novel geographical multi-level ID mapping and an improved finger table. The proposed scheme exploits the location information of mesh routers to decrease the number of hops the overlay messages traverse in the physical topology. Analytical and simulation results demonstrate that in comparison to the original Chord, WILCO has significant benefits: it reduces the number of lookup messages, has symmetric lookup on keys in both the forward and backward direction of the Chord ring and achieves a stretch factor of O(1). On top of this location-aware overlay, a WILCO-based novel video segment seeking algorithm is proposed to make use of the multi-level WILCO ID location-awareness to locate and retrieve requested video segments from the nearest peer in order to improve video quality. An enhanced version of WILCO segment seeking algorithm (WILCO+) is proposed to mitigate the sometimes suboptimal selection of the WILCO video segment seeking algorithm by extracting coordinates from WILCO ID to enable location-awareness. Analytical and simulation results illustrate that the proposed scheme outperforms the existing state-of-the-art solutions in terms of PSNR and packet loss with different background traffic loads. While hop count is frequently strongly correlated to Quality of Service, the link quality of the underlying network will also have a strong influence on content retrieval quality. As a result, a Cross-layer Wireless Link Quality-aware Overlay peer selection mechanism (WLO) is proposed. The proposed cross-layer mechanism uses a Multiplication Selector Metric (MSM) to select the best overlay peer. The proposed MSM overcomes the two issues facing the traditional summation-based metric, namely, the difficulty of bottleneck link identification and the influence of hop count on behavior. Simulation results show that WLO outperforms the existing state-of-the-art solutions in terms of video quality at different background loads and levels of topology incompleteness. Real life emulation-based tests and subjective video quality assessments are also performed to show that the simulation results are closely matched by the real-life emulation-based results and to illustrate the significant impact of overlay peer selection on the user perceived video quality

    Leveraging content properties to optimize distributed storage systems

    Get PDF
    Les fournisseurs de services de cloud computing, les réseaux sociaux et les entreprises de gestion des données ont assisté à une augmentation considérable du volume de données qu'ils reçoivent chaque jour. Toutes ces données créent des nouvelles opportunités pour étendre la connaissance humaine dans des domaines comme la santé, l'urbanisme et le comportement humain et permettent d'améliorer les services offerts comme la recherche, la recommandation, et bien d'autres. Ce n'est pas par accident que plusieurs universitaires mais aussi les médias publics se référent à notre époque comme l'époque Big Data . Mais ces énormes opportunités ne peuvent être exploitées que grâce à de meilleurs systèmes de gestion de données. D'une part, ces derniers doivent accueillir en toute sécurité ce volume énorme de données et, d'autre part, être capable de les restituer rapidement afin que les applications puissent bénéficier de leur traite- ment. Ce document se concentre sur ces deux défis relatifs aux Big Data . Dans notre étude, nous nous concentrons sur le stockage de sauvegarde (i) comme un moyen de protéger les données contre un certain nombre de facteurs qui peuvent les rendre indisponibles et (ii) sur le placement des données sur des systèmes de stockage répartis géographiquement, afin que les temps de latence perçue par l'utilisateur soient minimisés tout en utilisant les ressources de stockage et du réseau efficacement. Tout au long de notre étude, les données sont placées au centre de nos choix de conception dont nous essayons de tirer parti des propriétés de contenu à la fois pour le placement et le stockage efficace.Cloud service providers, social networks and data-management companies are witnessing a tremendous increase in the amount of data they receive every day. All this data creates new opportunities to expand human knowledge in fields like healthcare and human behavior and improve offered services like search, recommendation, and many others. It is not by accident that many academics but also public media refer to our era as the Big Data era. But these huge opportunities come with the requirement for better data management systems that, on one hand, can safely accommodate this huge and constantly increasing volume of data and, on the other, serve them in a timely and useful manner so that applications can benefit from processing them. This document focuses on the above two challenges that come with Big Data . In more detail, we study (i) backup storage systems as a means to safeguard data against a number of factors that may render them unavailable and (ii) data placement strategies on geographically distributed storage systems, with the goal to reduce the user perceived latencies and the network and storage resources are efficiently utilized. Throughout our study, data are placed in the centre of our design choices as we try to leverage content properties for both placement and efficient storage.RENNES1-Bibl. électronique (352382106) / SudocSudocFranceF

    Efficient user interactivity support for peer-to-peer Video-on-Demand systems

    No full text
    Video streaming services have been very popular and the growth of video traffic over Internet is still accelerating. Video-on-Demand (VoD) is one of such kind of services where videos are streamed to end users with provisioning for user interactivity. Due to the large amount of data and real time requirement, providing VoD service with client/server technique is extremely costly. Peer-to-Peer (P2P) mechansim has been recognized as a promising cost effective technique for internet-scale VoD systems. As opposed to P2P live streaming systems where only sequential access is allowed, P2P VoD systems support user interactivity such as VCR functions, which changes user viewing location. As a result, data at different users is highly diverse. The timely data delivery requirement and diversely distributed data introduce serious challenges in supporting user interactivity in P2P VoD systems, especially in terms of reducing buffering delay after a VCR operation is performed. This dissertation explores efficient user interactivity support in P2P VoD systems via three designs which have been proposed to take advantages of stable peers, locality of reference and data heterogeneity respectively. The author first identifies two characteristics of content discovery in P2P VoD: real-time constraints and limited local cache. Tapping on these properties, the author proposes a hybrid content discovery mechanism: SUpeRchunk-based eFficient search Network (SURFNet). SURFNet divides movies into superchunks and chunks. Stable peers that are likely to have longer lifespans in the system are used to construct an AVL tree to provide superchunk-level data availability information. Peers storing the same superchunk are grouped into a holder-chain, which is then attached to a node in the AVL tree. This structured overlay is further extended by a gossip-based unstructured network for chunk-level information exchange and data transmission. Since the AVL tree consists of only stable peers, it provides a reliable backbone even in highly dynamic environment. The analysis and simulation results show that SURFNet supports nearly- constant and logarithmic search time for seeking within a video and jumping to a different video respectively. Next, the author studies intra- and inter-video operations separately, aiming to exploit the locality of reference in user access patterns and reduce the latency of these VoD operations. The author first introduces the concepts of available, request and delivered locality in intra-video user access patterns and proves that high available locality exists in different videos by both simulation and theoretical analysis. Moreover, with a relaxed definition of data chunk holder, intra-video locality can facilitate a high likelihood of a peer seeking within a video, finding a holder of the requested data among its neighbors. Exploiting this property, an aggressive cached publish scheme is designed to build shortcuts over the DHT network so as to reduce the lookup delay. This scheme may be simple but it is practical and easy to implement. Inter-video locality is exploited via learning association rules from the collective viewing history. A fast association rule learning algorithm is proposed to infer the relations between videos in a distributed manner based on partial knowledge. Both search and content prefetch are incorporated to achieve low inter-video jump delay with minimal overhead. The simulations demonstrate that the proposed schemes can reduce the buffer and lookup delay for seeking within a video and provide an efficient prediction-based prefetch scheme for inter-video access. Finally, the author studies the data heterogeneity in P2P VoD systems. Data het- erogeneity in P2P content distribution systems has been observed by several studies, in terms of both access pattern and importance. However, most current content location algorithms treat the different data objects equally and use the same search scheme for them. The author proposes a practical Differentiated Lookup mechanism (DiffLookup), aiming to reduce lookup delay with minimal cost. DiffLookup integrates two lookup services: Distributed Hash Tables (DHTs) and broadcast based replication. DHT is employed to construct a structured overlay and provide basic O(log n) lookup service. Furthermore, by taking advantage of DHT routing table, a prefix broadcast scheme is designed to collect object popularity and replicate index over the network. Service classification rules are introduced to determine which service should be applied for a certain object. For an object whose index is replicated by prefix broadcast, a lookup can be resolved locally with high probability. The simulation shows that, with a slight but acceptable increase in replication bandwidth, DiffLookup can reduce lookup delay significantly by applying the proposed broadcast-based replication to the hottest 10% objects compared to a system without service differentiation. Moreover, compared to existing optimal replication schemes, DiffLookup is more flexible and reliable in dynamic P2P networks and is simple and practical to deploy. The three proposed designs are suitable for different environments. SURFNet is very efficient when the local cache is limited and stable peers exist. Aggressive and cached publish and association rules learning are powerful when user access patterns exhibit strong locality of reference. DiffLookup can be employed when data heterogeneity is observed and the replication overhead is acceptable.Doctor of Philosophy (SCE
    corecore