94 research outputs found

    Superadditivity in trade-off capacities of quantum channels

    Full text link
    In this article, we investigate the additivity phenomenon in the dynamic capacity of a quantum channel for trading classical communication, quantum communication and entanglement. Understanding such additivity property is important if we want to optimally use a quantum channel for general communication purpose. However, in a lot of cases, the channel one will be using only has an additive single or double resource capacity, and it is largely unknown if this could lead to an superadditive double or triple resource capacity. For example, if a channel has an additive classical and quantum capacity, can the classical-quantum capacity be superadditive? In this work, we answer such questions affirmatively. We give proof-of-principle requirements for these channels to exist. In most cases, we can provide an explicit construction of these quantum channels. The existence of these superadditive phenomena is surprising in contrast to the result that the additivity of both classical-entanglement and classical-quantum capacity regions imply the additivity of the triple capacity region.Comment: 15 pages. v2: typo correcte

    Superadditivity in Trade-Off Capacities of Quantum Channels

    Full text link
    © 1963-2012 IEEE. In this paper, we investigate the additivity phenomenon in the quantum dynamic capacity region of a quantum channel for trading the resources of classical communication, quantum communication, and entanglement. Understanding such an additivity property is important if we want to optimally use a quantum channel for general communication purposes. However, in a lot of cases, the channel one will be using only has an additive single or double resource capacity region, and it is largely unknown if this could lead to a strictly superadditive double or triple resource capacity region, respectively. For example, if a channel has additive classical and quantum capacities, can the classical-quantum capacity region be strictly superadditive? In this paper, we answer such questions affirmatively. We give proof-of-principle requirements for these channels to exist. In most cases, we can provide an explicit construction of these quantum channels. The existence of these superadditive phenomena is surprising in contrast to the result that the additivity of both classical-entanglement and classical-quantum capacity regions imply the additivity of the triple resource capacity region for a given channel

    Superadditivity of the Classical Capacity with Limited Entanglement Assistance

    Get PDF
    Finding the optimal encoding strategies can be challenging for communication using quantum channels, as classical and quantum capacities may be superadditive. Entanglement assistance can often simplify this task, as the entanglement-assisted classical capacity for any channel is additive, making entanglement across channel uses unnecessary. If the entanglement assistance is limited, the picture is much more unclear. Suppose the classical capacity is superadditive, then the classical capacity with limited entanglement assistance could retain superadditivity by continuity arguments. If the classical capacity is additive, it is unknown if superadditivity can still be developed with limited entanglement assistance. We show this is possible, by providing an example. We construct a channel for which, the classical capacity is additive, but that with limited entanglement assistance can be superadditive. This shows entanglement plays a weird role in communication and we still understand very little about it.Comment: 13 page

    Superadditivity of Quantum Channel Coding Rate with Finite Blocklength Joint Measurements

    Full text link
    The maximum rate at which classical information can be reliably transmitted per use of a quantum channel strictly increases in general with NN, the number of channel outputs that are detected jointly by the quantum joint-detection receiver (JDR). This phenomenon is known as superadditivity of the maximum achievable information rate over a quantum channel. We study this phenomenon for a pure-state classical-quantum (cq) channel and provide a lower bound on CN/NC_N/N, the maximum information rate when the JDR is restricted to making joint measurements over no more than NN quantum channel outputs, while allowing arbitrary classical error correction. We also show the appearance of a superadditivity phenomenon---of mathematical resemblance to the aforesaid problem---in the channel capacity of a classical discrete memoryless channel (DMC) when a concatenated coding scheme is employed, and the inner decoder is forced to make hard decisions on NN-length inner codewords. Using this correspondence, we develop a unifying framework for the above two notions of superadditivity, and show that for our lower bound to CN/NC_N/N to be equal to a given fraction of the asymptotic capacity CC of the respective channel, NN must be proportional to V/C2V/C^2, where VV is the respective channel dispersion quantity.Comment: To appear in IEEE Transactions on Information Theor

    Implementation of generalized quantum measurements: superadditive quantum coding, accessible information extraction, and classical capacity limit

    Full text link
    Quantum information theory predicts that when the transmission resource is doubled in quantum channels, the amount of information transmitted can be increased more than twice by quantum channel coding technique, whereas the increase is at most twice in classical information theory. This remarkable feature, the superadditive quantum coding gain, can be implemented by appropriate choices of code words and corresponding quantum decoding which requires a collective quantum measurement. Recently, the first experimental demonstration was reported [Phys. Rev. Lett. 90, 167906 (2003)]. The purpose of this paper is to describe our experiment in detail. Particularly, a design strategy of quantum collective decoding in physical quantum circuits is emphasized. We also address the practical implication of the gain on communication performance by introducing the quantum-classical hybrid coding scheme. We show how the superadditive quantum coding gain, even in a small code length, can boost the communication performance of conventional coding technique.Comment: 15 pages, 14 figure

    Quantum channels and their entropic characteristics

    Full text link
    One of the major achievements of the recently emerged quantum information theory is the introduction and thorough investigation of the notion of quantum channel which is a basic building block of any data-transmitting or data-processing system. This development resulted in an elaborated structural theory and was accompanied by the discovery of a whole spectrum of entropic quantities, notably the channel capacities, characterizing information-processing performance of the channels. This paper gives a survey of the main properties of quantum channels and of their entropic characterization, with a variety of examples for finite dimensional quantum systems. We also touch upon the "continuous-variables" case, which provides an arena for quantum Gaussian systems. Most of the practical realizations of quantum information processing were implemented in such systems, in particular based on principles of quantum optics. Several important entropic quantities are introduced and used to describe the basic channel capacity formulas. The remarkable role of the specific quantum correlations - entanglement - as a novel communication resource, is stressed.Comment: review article, 60 pages, 5 figures, 194 references; Rep. Prog. Phys. (in press

    Quantum measurements of atoms using cavity QED

    Full text link
    Generalized quantum measurements are an important extension of projective or von Neumann measurements, in that they can be used to describe any measurement that can be implemented on a quantum system. We describe how to realize two non-standard quantum measurements using cavity quantum electrodynamics (QED). The first measurement optimally and unabmiguously distinguishes between two non-orthogonal quantum states. The second example is a measurement that demonstrates superadditive quantum coding gain. The experimental tools used are single-atom unitary operations effected by Ramsey pulses and two-atom Tavis-Cummings interactions. We show how the superadditive quantum coding gain is affected by errors in the field-ionisation detection of atoms, and that even with rather high levels of experimental imperfections, a reasonable amount of superadditivity can still be seen. To date, these types of measurement have only been realized on photons. It would be of great interest to have realizations using other physical systems. This is for fundamental reasons, but also since quantum coding gain in general increases with code word length, and a realization using atoms could be more easily scaled than existing realizations using photons.Comment: 10 pages, 5 figure

    One-shot entanglement-assisted quantum and classical communication

    Full text link
    We study entanglement-assisted quantum and classical communication over a single use of a quantum channel, which itself can correspond to a finite number of uses of a channel with arbitrarily correlated noise. We obtain characterizations of the corresponding one-shot capacities by establishing upper and lower bounds on them in terms of the difference of two smoothed entropic quantities. In the case of a memoryless channel, the upper and lower bounds converge to the known single-letter formulas for the corresponding capacities, in the limit of asymptotically many uses of it. Our results imply that the difference of two smoothed entropic quantities characterizing the one-shot entanglement-assisted capacities serves as a one-shot analogue of the mutual information, since it reduces to the mutual information, between the output of the channel and a system purifying its input, in the asymptotic, memoryless scenario.Comment: 10 pages, 2 figures. Title changed due to new results on the one-shot entanglement-assisted quantum communication. In addition, an error in the previous version regarding the converse proof of the one-shot EAC capacity has been correcte
    • …
    corecore