28 research outputs found

    Surveys in game theory and related topics

    Get PDF

    Budget Feasible Mechanisms

    Full text link
    We study a novel class of mechanism design problems in which the outcomes are constrained by the payments. This basic class of mechanism design problems captures many common economic situations, and yet it has not been studied, to our knowledge, in the past. We focus on the case of procurement auctions in which sellers have private costs, and the auctioneer aims to maximize a utility function on subsets of items, under the constraint that the sum of the payments provided by the mechanism does not exceed a given budget. Standard mechanism design ideas such as the VCG mechanism and its variants are not applicable here. We show that, for general functions, the budget constraint can render mechanisms arbitrarily bad in terms of the utility of the buyer. However, our main result shows that for the important class of submodular functions, a bounded approximation ratio is achievable. Better approximation results are obtained for subclasses of the submodular functions. We explore the space of budget feasible mechanisms in other domains and give a characterization under more restricted conditions

    Domination and Decomposition in Multiobjective Programming

    Get PDF
    During the last few decades, multiobjective programming has received much attention for both its numerous theoretical advances as well as its continued success in modeling and solving real-life decision problems in business and engineering. In extension of the traditionally adopted concept of Pareto optimality, this research investigates the more general notion of domination and establishes various theoretical results that lead to new optimization methods and support decision making. After a preparatory discussion of some preliminaries and a review of the relevant literature, several new findings are presented that characterize the nondominated set of a general vector optimization problem for which the underlying domination structure is defined in terms of different cones. Using concepts from linear algebra and convex analysis, a well known result relating nondominated points for polyhedral cones with Pareto solutions is generalized to nonpolyhedral cones that are induced by positively homogeneous functions, and to translated polyhedral cones that are used to describe a notion of approximate nondominance. Pareto-oriented scalarization methods are modified and several new solution approaches are proposed for these two classes of cones. In addition, necessary and sufficient conditions for nondominance with respect to a variable domination cone are developed, and some more specific results for the case of Bishop-Phelps cones are derived. Based on the above findings, a decomposition framework is proposed for the solution of multi-scenario and large-scale multiobjective programs and analyzed in terms of the efficiency relationships between the original and the decomposed subproblems. Using the concept of approximate nondominance, an interactive decision making procedure is formulated to coordinate tradeoffs between these subproblems and applied to selected problems from portfolio optimization and engineering design. Some introductory remarks and concluding comments together with ideas and research directions for possible future work complete this dissertation

    Game Theory

    Get PDF
    The Special Issue “Game Theory” of the journal Mathematics provides a collection of papers that represent modern trends in mathematical game theory and its applications. The works address the problem of constructing and implementation of solution concepts based on classical optimality principles in different classes of games. In the case of non-cooperative behavior of players, the Nash equilibrium as a basic optimality principle is considered in both static and dynamic game settings. In the case of cooperative behavior of players, the situation is more complicated. As is seen from presented papers, the direct use of cooperative optimality principles in dynamic and differential games may bring time or subgame inconsistency of a solution which makes the cooperative schemes unsustainable. The notion of time or subgame consistency is crucial to the success of cooperation in a dynamic framework. In the works devoted to dynamic or differential games, this problem is analyzed and the special regularization procedures proposed to achieve time or subgame consistency of cooperative solutions. Among others, special attention in the presented book is paid to the construction of characteristic functions which determine the power of coalitions in games. The book contains many multi-disciplinary works applied to economic and environmental applications in a coherent manner

    Models and algorithms for dominance-constrained stochastic programs with recourse

    Get PDF
    In der vorliegenden Dissertationsschrift befassen wir uns mit stochastischen Optimierungsproblemen unter Nebenbedingungen, die mithilfe stochastischer Ordnungen formuliert sind. Hierbei konzentrieren wir uns auf stochastische Dominanz erster Ordnung und die steigende konvexe Ordnung, wobei beide Ordnungen in unserem Fall auf Zufallsgrößen operieren, welche Optimalwerten zweistuger stochastischer Optimierungsprobleme mit Kompensation entsprechen. Wir stellen die theoretische Relevanz der vorliegenden Problemklasse heraus und tragen zur Entwicklung von effizienten Lösungsverfahren bei. Um Letzteres zu erreichen untersuchen und erweitern wir bestehende gemischt-ganzzahlige lineare Repräsentationen dieser Probleme und entwickeln maßgeschneiderte Dekompositionsverfahren. Der Schwerpunkt dieser Arbeit liegt dabei auf der Entwicklung und Implementierung besonders effizienter Lösungsansätze für den Fall mit linearer Kompensation.We consider optimization problems with stochastic order constraints of first and second order posed on random variables coming from two-stage stochastic programs with recourse. We clarify the theoretical relevance of these specific problems, and contribute to improving their computational tractability. For the latter, we review and enhance mixed-integer linear programming (MILP) equivalents. These exist for either mixed-integer or continuous variables in the second stage. Algorithmically, our focus is on developing tailored cutting-plane decomposition methods for these models

    Computing the Nucleolus of Matching and b-Matching Games

    Get PDF
    In the classical weighted matching problem the optimizer is given a graph with edge weights and their goal is to find a matching which maximizes the sum of the weights of edges in the matching. It is typically assumed in this process that the optimizer has unilateral control over the decision to take each edge. Where cooperative game theory intersects combinatorial optimization this assumption is subverted. In a cooperative matching game each vertex of the graph is controlled by a distinct player, and an edge can only be taken into a matching with the cooperation of the players at each of its vertices. One can think of the weight of an edge as representing the value the players of that edge generate by collaborating in partnership. In this setting the question is more than simply can we find an optimal matching, as in the classic matching problem, but also how should the players share the total value of the matching amongst themselves. The players should share the value they generate in a way that fairly respects the contributions of each player, and which encourages as well as possible the stable participation of every player in the network. Cooperative game theory formulates such fair distributions of wealth as solution concepts. One classical and beautiful solution concept is the nucleolus. Intuitively the nucleolus distributes value so that the worst off groups of players are as satisfied as possible, and subject to that the second worst off groups, and so on. Here we think of satisfaction as the difference between how much value the players were distributed versus how much they could have generated on their own had they seceded from the grand coalition. This thesis studies the nucleolus of matching games, and their generalization to b-matching games where each player can take on multiple partnerships simultaneously, from a computational perspective. We study when the nucleolus of a b-matching game can be computed efficiently and when it is intractable to do so. Chapter 2 describes an algorithm for computing the nucleolus of any weighted cooperative matching game in polynomial time. Chapter 3 studies the computational complexity of b-matching games. We show that computing the nucleolus of such games is NP-hard even when every vertex has b-value 3, the graph is unweighted, bipartite, and of maximum degree 7. Finally, in Chapter 4 we show that when the problem of determining the worst off coalition under a given allocation in a cooperative game can be formulated as a dynamic program then the nucleolus of the game can be computed in time which is only a polynomial factor larger than the time it takes to solve said dynamic program. We apply this result to show that nucleolus of b-matching games can be computed in polynomial time on graphs of bounded treewidth

    Two-Stage Stochastic Mixed Integer Linear Optimization

    Get PDF
    The primary focus of this dissertation is on optimization problems that involve uncertainty unfolding over time. In many real-world decisions, the decision-maker has to decide in the face of uncertainty. After the outcome of the uncertainty is observed, she can correct her initial decision by taking some corrective actions at a later time stage. These problems are known as stochastic optimization problems with recourse. In the case that the number of time stages is limited to two, these problems are referred to as two-stage stochastic optimization problems. We focus on this class of optimization problems in this dissertation. The optimization problem that is solved before the realization of uncertainty is called the first-stage problem and the problem solved to make a corrective action on the initial decision is called the second-stage problem. The decisions made in the second- stage are affected by both the first-stage decisions and the realization of random variables. Consequently, the two-stage problem can be viewed as a parametric optimization problem which involves the so-called value function of the second-stage problem. The value function describes the change in optimal objective value as the right-hand side is varied and understanding it is crucial to developing solution methods for two-stage optimization problems.In the first part of this dissertation, we study the value function of a MILP. We review the structural properties of the value function and its construction methods. We con- tribute by proposing a discrete representation of the MILP value function. We show that the structure of the MILP value function arises from two other optimization problems that are constructed from its discrete and continuous components. We show that our representation can explain certain structural properties of the MILP value function such as the sets over which the value function is convex. We then provide a simplification of the Jeroslow Formula obtained by applying our results. Finally, we describe a cutting plane algorithm for its construction and determine the conditions under which the pro- posed algorithm is finite.Traditionally, the solution methods developed for two-stage optimization problems consider the problem where the second-stage problem involves only continuous variables. In the recent years, however, two-stage problems with integer variables in the second- stage have been visited in several studies. These problems are important in practice and arise in several applications in supply chain, finance, forestry and disaster management, among others. The second part of this dissertation concerns the development and implementation of a solution method for the two-stage optimization problem where both the first and second stage involve mixed integer variables. We describe a generalization of the classical Benders’ method for solving mixed integer two-stage stochastic linear optimization problems. We employ the strong dual functions encoded in the branch-and-bound trees resulting from solution of the second-stage problem. We show that these can be used effectively within a Benders’ framework and describe a method for obtaining all required dual functions from a single, continuously refined branch-and-bound tree that is used to warm start the solution procedure for each subproblem.Finally, we provide details on the implementation of our proposed algorithm. The implementation allows for construction of several approximations of the value function of the second-stage problem. We use different warm-starting strategies within our proposed algorithm to solve the second-stage problems, including solving all second-stage problems with a single tree. We provide computational results on applying these strategies to the stochastic server problems (SSLP) from the stochastic integer programming test problem library (SIPLIB)

    Exact Approaches for Higher-Dimensional Orthogonal Packing and Related Problems

    Get PDF
    NP-hard problems of higher-dimensional orthogonal packing are considered. We look closer at their logical structure and show that they can be decomposed into problems of a smaller dimension with a special contiguous structure. This decomposition influences the modeling of the packing process, which results in three new solution approaches. Keeping this decomposition in mind, we model the smaller-dimensional problems in a single position-indexed formulation with non-overlapping inequalities serving as binding constraints. Thus, we come up with a new integer linear programming model, which we subject to polyhedral analysis. Furthermore, we establish general non-overlapping and density inequalities and prove under appropriate assumptions their facet-defining property for the convex hull of the integer solutions. Based on the proposed model and the strong inequalities, we develop a new branch-and-cut algorithm. Being a relaxation of the higher-dimensional problem, each of the smaller-dimensional problems is also relevant for different areas, e.g. for scheduling. To tackle any of these smaller-dimensional problems, we use a Gilmore-Gomory model, which is a Dantzig-Wolfe decomposition of the position-indexed formulation. In order to obtain a contiguous structure for the optimal solution, its basis matrix must have a consecutive 1's property. For construction of such matrices, we develop new branch-and-price algorithms which are distinguished by various strategies for the enumeration of partial solutions. We also prove some characteristics of partial solutions, which tighten the slave problem of column generation. For a nonlinear modeling of the higher-dimensional packing problems, we investigate state-of-the-art constraint programming approaches, modify them, and propose new dichotomy and intersection branching strategies. To tighten the constraint propagation, we introduce new pruning rules. For that, we apply 1D relaxation with intervals and forbidden pairs, an advanced bar relaxation, 2D slice relaxation, and 1D slice-bar relaxation with forbidden pairs. The new rules are based on the relaxation by the smaller-dimensional problems which, in turn, are replaced by a linear programming relaxation of the Gilmore-Gomory model. We conclude with a discussion of implementation issues and numerical studies of all proposed approaches.Es werden NP-schwere höherdimensionale orthogonale Packungsprobleme betrachtet. Wir untersuchen ihre logische Struktur genauer und zeigen, dass sie sich in Probleme kleinerer Dimension mit einer speziellen Nachbarschaftsstruktur zerlegen lassen. Dies beeinflusst die Modellierung des Packungsprozesses, die ihreseits zu drei neuen Lösungsansätzen führt. Unter Beachtung dieser Zerlegung modellieren wir die Probleme kleinerer Dimension in einer einzigen positionsindizierten Formulierung mit Nichtüberlappungsungleichungen, die als Bindungsbedingungen dienen. Damit entwickeln wir ein neues Modell der ganzzahligen linearen Optimierung und unterziehen dies einer Polyederanalyse. Weiterhin geben wir allgemeine Nichtüberlappungs- und Dichtheitsungleichungen an und beweisen unter geeigneten Annahmen ihre facettendefinierende Eigenschaft für die konvexe Hülle der ganzzahligen Lösungen. Basierend auf dem vorgeschlagenen Modell und den starken Ungleichungen entwickeln wir einen neuen Branch-and-Cut-Algorithmus. Jedes Problem kleinerer Dimension ist eine Relaxation des höherdimensionalen Problems. Darüber hinaus besitzt es Anwendungen in verschiedenen Bereichen, wie zum Beispiel im Scheduling. Für die Behandlung der Probleme kleinerer Dimension setzen wir das Gilmore-Gomory-Modell ein, das eine Dantzig-Wolfe-Dekomposition der positionsindizierten Formulierung ist. Um eine Nachbarschaftsstruktur zu erhalten, muss die Basismatrix der optimalen Lösung die consecutive-1’s-Eigenschaft erfüllen. Für die Konstruktion solcher Matrizen entwickeln wir neue Branch-and-Price-Algorithmen, die sich durch Strategien zur Enumeration von partiellen Lösungen unterscheiden. Wir beweisen auch einige Charakteristiken von partiellen Lösungen, die das Hilfsproblem der Spaltengenerierung verschärfen. Für die nichtlineare Modellierung der höherdimensionalen Packungsprobleme untersuchen wir moderne Ansätze des Constraint Programming, modifizieren diese und schlagen neue Dichotomie- und Überschneidungsstrategien für die Verzweigung vor. Für die Verstärkung der Constraint Propagation stellen wir neue Ablehnungskriterien vor. Wir nutzen dabei 1D Relaxationen mit Intervallen und verbotenen Paaren, erweiterte Streifen-Relaxation, 2D Scheiben-Relaxation und 1D Scheiben-Streifen-Relaxation mit verbotenen Paaren. Alle vorgestellten Kriterien basieren auf Relaxationen durch Probleme kleinerer Dimension, die wir weiter durch die LP-Relaxation des Gilmore-Gomory-Modells abschwächen. Wir schließen mit Umsetzungsfragen und numerischen Experimenten aller vorgeschlagenen Ansätze

    Potential Games and Interactive Decisions with Multiple Criteria.

    Get PDF
    Abstract: Game theory is a mathematical theory for analyzing strategic interaction between decision makers. This thesis covers two game-theoretic topics. The first part of this thesis deals with potential games: noncooperative games in which the information about the goals of the separate players that is required to determine equilibria, can be aggregated into a single function. The structure of different types of potential games is investigated. Congestion problems and the financing of public goods through voluntary contributions are studied in this framework. The second part of the thesis abandons the common assumption that each player is guided by a single goal. It takes into account players who are guided by several, possibly conflicting, objective functions.
    corecore