3 research outputs found

    AI based Robot Safe Learning and Control

    Get PDF
    Introduction This open access book mainly focuses on the safe control of robot manipulators. The control schemes are mainly developed based on dynamic neural network, which is an important theoretical branch of deep reinforcement learning. In order to enhance the safety performance of robot systems, the control strategies include adaptive tracking control for robots with model uncertainties, compliance control in uncertain environments, obstacle avoidance in dynamic workspace. The idea for this book on solving safe control of robot arms was conceived during the industrial applications and the research discussion in the laboratory. Most of the materials in this book are derived from the authors’ papers published in journals, such as IEEE Transactions on Industrial Electronics, neurocomputing, etc. This book can be used as a reference book for researcher and designer of the robotic systems and AI based controllers, and can also be used as a reference book for senior undergraduate and graduate students in colleges and universities

    Model-based recurrent neural network for redundancy resolution of manipulator with remote centre of motion constraints

    Get PDF
    Redundancy resolution is a critical issue to achieve accurate kinematic control for manipulators. End-effectors of manipulators can track desired paths well with suitable resolved joint variables. In some manipulation applications such as selecting insertion paths to thrill through a set of points, it requires the distal link of a manipulator to translate along such fixed point and then perform manipulation tasks. The point is known as remote centre of motion (RCM) to constrain motion planning and kinematic control of manipulators. Together with its end-effector finishing path tracking tasks, the redundancy resolution of a manipulators has to maintain RCM to produce reliable resolved joint angles. However, current existing redundancy resolution schemes on manipulators based on recurrent neural networks (RNNs) mainly are focusing on unrestricted motion without RCM constraints considered. In this paper, an RNN-based approach is proposed to solve the redundancy resolution issue with RCM constraints, developing a new general dynamic optimisation formulation containing the RCM constraints. Theoretical analysis shows the theoretical derivation and convergence of the proposed RNN for redundancy resolution of manipulators with RCM constraints. Simulation results further demonstrate the efficiency of the proposed method in end-effector path tracking control under RCM constraints based on an industrial redundant manipulator system

    Super-twisting ZNN for coordinated motion control of multiple robot manipulators with external disturbances suppression

    No full text
    This paper considers the coordination motion control of multiple robot manipulators by developing a unified framework of super-twisting zeroing neural network (ST-ZNN), and proposes a novel external disturbances suppression model. The proposed ST-ZNN model makes new progresses of both theory and practice by overcoming two limitations in the conventional ZNN (CZNN) models, i.e., the convergence time tending to be infinitely large and the rejection of external disturbances staying at the stage of asymptotic convergence. Then, the global stability, finite-time convergence, and robustness against external disturbances are rigorously proven in the theory. Finally, illustrative coordination motion control tasks, comparisons and performance tests demonstrate the effectiveness and superiority of the proposed ST-ZNN model for coordination motion control of multiple robot manipulators
    corecore