3,289 research outputs found

    What scans we will read: imaging instrumentation trends in clinical oncology

    Get PDF
    Oncological diseases account for a significant portion of the burden on public healthcare systems with associated costs driven primarily by complex and long-lasting therapies. Through the visualization of patient-specific morphology and functional-molecular pathways, cancerous tissue can be detected and characterized non- invasively, so as to provide referring oncologists with essential information to support therapy management decisions. Following the onset of stand-alone anatomical and functional imaging, we witness a push towards integrating molecular image information through various methods, including anato-metabolic imaging (e.g., PET/ CT), advanced MRI, optical or ultrasound imaging. This perspective paper highlights a number of key technological and methodological advances in imaging instrumentation related to anatomical, functional, molecular medicine and hybrid imaging, that is understood as the hardware-based combination of complementary anatomical and molecular imaging. These include novel detector technologies for ionizing radiation used in CT and nuclear medicine imaging, and novel system developments in MRI and optical as well as opto-acoustic imaging. We will also highlight new data processing methods for improved non-invasive tissue characterization. Following a general introduction to the role of imaging in oncology patient management we introduce imaging methods with well-defined clinical applications and potential for clinical translation. For each modality, we report first on the status quo and point to perceived technological and methodological advances in a subsequent status go section. Considering the breadth and dynamics of these developments, this perspective ends with a critical reflection on where the authors, with the majority of them being imaging experts with a background in physics and engineering, believe imaging methods will be in a few years from now. Overall, methodological and technological medical imaging advances are geared towards increased image contrast, the derivation of reproducible quantitative parameters, an increase in volume sensitivity and a reduction in overall examination time. To ensure full translation to the clinic, this progress in technologies and instrumentation is complemented by progress in relevant acquisition and image-processing protocols and improved data analysis. To this end, we should accept diagnostic images as “data”, and – through the wider adoption of advanced analysis, including machine learning approaches and a “big data” concept – move to the next stage of non-invasive tumor phenotyping. The scans we will be reading in 10 years from now will likely be composed of highly diverse multi- dimensional data from multiple sources, which mandate the use of advanced and interactive visualization and analysis platforms powered by Artificial Intelligence (AI) for real-time data handling by cross-specialty clinical experts with a domain knowledge that will need to go beyond that of plain imaging

    Hemodynamic Quantifications By Contrast-Enhanced Ultrasound:From In-Vitro Modelling To Clinical Validation

    Get PDF

    Hemodynamic Quantifications By Contrast-Enhanced Ultrasound:From In-Vitro Modelling To Clinical Validation

    Get PDF

    Precise scatterer localization for ultrasound contrast imaging

    Get PDF
    This thesis is concerned with developing algorithms for the precise localization of ultrasound point scatterers with an eye to super-resolution ultrasound contrast imaging. In medical ultrasound, the conventional resolution is limited by diffraction and, in contrast to other sensing fields, point source imaging has not been extensively investigated. Here, two independent methods were proposed aiming to increase the lateral and the axial resolution respectively, by improving the localization accuracy of a single scatterer. The methods were examined with simulated and experimental data by using standard transmission protocols. Where a technique is applicable to imaging of more complicated structures than point sources, this was also examined. Further, a preliminary study was included with algorithm application to microbubbles that are currently used in contrast enhanced ultrasound. It was demonstrated that it is feasible to translate to ultrasonics, adaptive processes or techniques from optical imaging/astronomy. This way, it was possible to overcome the diffraction limit and achieve sub-wavelength localization. The accuracy gains are subject to many parameters but may reach up to two orders of magnitude, and are based exclusively on array signal processing. The latter is an important advantage since current attempts for super-resolution ultrasound are image-based which is generally undesired

    Assessing the performance of ultrafast vector flow imaging in the neonatal heart via multiphysics modeling and In vitro experiments

    Get PDF
    Ultrafast vector flow imaging would benefit newborn patients with congenital heart disorders, but still requires thorough validation before translation to clinical practice. This paper investigates 2-D speckle tracking (ST) of intraventricular blood flow in neonates when transmitting diverging waves at ultrafast frame rate. Computational and in vitro studies enabled us to quantify the performance and identify artifacts related to the flow and the imaging sequence. First, synthetic ultrasound images of a neonate's left ventricular flow pattern were obtained with the ultrasound simulator Field II by propagating point scatterers according to 3-D intraventricular flow fields obtained with computational fluid dynamics (CFD). Noncompounded diverging waves (opening angle of 60 degrees) were transmitted at a pulse repetition frequency of 9 kHz. ST of the B-mode data provided 2-D flow estimates at 180 Hz, which were compared with the CFD flow field. We demonstrated that the diastolic inflow jet showed a strong bias in the lateral velocity estimates at the edges of the jet, as confirmed by additional in vitro tests on a jet flow phantom. Furthermore, ST performance was highly dependent on the cardiac phase with low flows (< 5 cm/s), high spatial flow gradients, and out-of-plane flow as deteriorating factors. Despite the observed artifacts, a good overall performance of 2-D ST was obtained with a median magnitude underestimation and angular deviation of, respectively, 28% and 13.5 degrees during systole and 16% and 10.5 degrees during diastole

    Independent component analysis (ICA) applied to ultrasound image processing and tissue characterization

    Get PDF
    As a complicated ubiquitous phenomenon encountered in ultrasound imaging, speckle can be treated as either annoying noise that needs to be reduced or the source from which diagnostic information can be extracted to reveal the underlying properties of tissue. In this study, the application of Independent Component Analysis (ICA), a relatively new statistical signal processing tool appeared in recent years, to both the speckle texture analysis and despeckling problems of B-mode ultrasound images was investigated. It is believed that higher order statistics may provide extra information about the speckle texture beyond the information provided by first and second order statistics only. However, the higher order statistics of speckle texture is still not clearly understood and very difficult to model analytically. Any direct dealing with high order statistics is computationally forbidding. On the one hand, many conventional ultrasound speckle texture analysis algorithms use only first or second order statistics. On the other hand, many multichannel filtering approaches use pre-defined analytical filters which are not adaptive to the data. In this study, an ICA-based multichannel filtering texture analysis algorithm, which considers both higher order statistics and data adaptation, was proposed and tested on the numerically simulated homogeneous speckle textures. The ICA filters were learned directly from the training images. Histogram regularization was conducted to make the speckle images quasi-stationary in the wide sense so as to be adaptive to an ICA algorithm. Both Principal Component Analysis (PCA) and a greedy algorithm were used to reduce the dimension of feature space. Finally, Support Vector Machines (SVM) with Radial Basis Function (RBF) kernel were chosen as the classifier for achieving best classification accuracy. Several representative conventional methods, including both low and high order statistics based methods, and both filtering and non-filtering methods, have been chosen for comparison study. The numerical experiments have shown that the proposed ICA-based algorithm in many cases outperforms other algorithms for comparison. Two-component texture segmentation experiments were conducted and the proposed algorithm showed strong capability of segmenting two visually very similar yet different texture regions with rather fuzzy boundaries and almost the same mean and variance. Through simulating speckle with first order statistics approaching gradually to the Rayleigh model from different non-Rayleigh models, the experiments to some extent reveal how the behavior of higher order statistics changes with the underlying property of tissues. It has been demonstrated that when the speckle approaches the Rayleigh model, both the second and higher order statistics lose the texture differentiation capability. However, when the speckles tend to some non-Rayleigh models, methods based on higher order statistics show strong advantage over those solely based on first or second order statistics. The proposed algorithm may potentially find clinical application in the early detection of soft tissue disease, and also be helpful for better understanding ultrasound speckle phenomenon in the perspective of higher order statistics. For the despeckling problem, an algorithm was proposed which adapted the ICA Sparse Code Shrinkage (ICA-SCS) method for the ultrasound B-mode image despeckling problem by applying an appropriate preprocessing step proposed by other researchers. The preprocessing step makes the speckle noise much closer to the real white Gaussian noise (WGN) hence more amenable to a denoising algorithm such as ICS-SCS that has been strictly designed for additive WGN. A discussion is given on how to obtain the noise-free training image samples in various ways. The experimental results have shown that the proposed method outperforms several classical methods chosen for comparison, including first or second order statistics based methods (such as Wiener filter) and multichannel filtering methods (such as wavelet shrinkage), in the capability of both speckle reduction and edge preservation
    corecore