4,457 research outputs found

    An optimized ultrasound detector for photoacoustic breast tomography

    Get PDF
    Photoacoustic imaging has proven to be able to detect vascularization-driven optical absorption contrast associated with tumors. In order to detect breast tumors located a few centimeter deep in tissue, a sensitive ultrasound detector is of crucial importance for photoacoustic mammography. Further, because the expected photoacoustic frequency bandwidth (a few MHz to tens of kHz) is inversely proportional to the dimensions of light absorbing structures (0.5 to 10+ mm), proper choices of materials and their geometries, and proper considerations in design have to be made for optimal photoacoustic detectors. In this study, we design and evaluate a specialized ultrasound detector for photoacoustic mammography. Based on the required detector sensitivity and its frequency response, a selection of active material and matching layers and their geometries is made leading to a functional detector models. By iteration between simulation of detector performances, fabrication and experimental characterization of functional models an optimized implementation is made and evaluated. The experimental results of the designed first and second functional detectors matched with the simulations. In subsequent bare piezoelectric samples the effect of lateral resonances was addressed and their influence minimized by sub-dicing the samples. Consequently, using simulations, the final optimized detector could be designed, with a center frequency of 1 MHz and a -6 dB bandwidth of ~80%. The minimum detectable pressure was measured to be 0.5 Pa, which will facilitate deeper imaging compared to the currrent systems. The detector should be capable of detecting vascularized tumors with resolution of 1-2 mm. Further improvements by proper electrical grounding and shielding and implementation of this design into an arrayed detector will pave the way for clinical applications of photoacoustic mammography.Comment: Accepted for publication in Medical Physics (American Association of Physicists in Medicine

    Tomographic imaging and scanning thermal microscopy: thermal impedance tomography

    Get PDF
    The application of tomographic imaging techniques developed for medical applications to the data provided by the scanning thermal microscope will give access to true three-dimensional information on the thermal properties of materials on a mm length scale. In principle, the technique involves calculating and inverting a sensitivity matrix for a uniform isotropic material, collecting ordered data at several modulation frequencies, and multiplying the inverse of the matrix with the data vector. In practice, inversion of the matrix in impractical, and a novel iterative technique is used. Examples from both simulated and real data are given

    Arts of electrical impedance tomographic sensing

    Get PDF
    This paper reviews governing theorems in electrical impedance sensing for analysing the relationships of boundary voltages obtained from different sensing strategies. It reports that both the boundary voltage values and the associated sensitivity matrix of an alternative sensing strategy can be derived from a set of full independent measurements and sensitivity matrix obtained from other sensing strategy. A new sensing method for regional imaging with limited measurements is reported. It also proves that the sensitivity coefficient back-projection algorithm does not always work for all sensing strategies unless the diagonal elements of the transformed matrix, ATA, have significant values and can be approximate to a diagonal matrix. Imaging capabilities of few sensing strategies were verified with static set-ups, which suggest the adjacent electrode pair sensing strategy displays better performance compared to the diametrically opposite protocol, with both the back-projection and multi-step image reconstruction methods. An application of electrical impedance tomography for sensing gas in water two phase flows is demonstrated

    Discrete Geometric Structures in Homogenization and Inverse Homogenization with application to EIT

    Get PDF
    We introduce a new geometric approach for the homogenization and inverse homogenization of the divergence form elliptic operator with rough conductivity coefficients σ(x)\sigma(x) in dimension two. We show that conductivity coefficients are in one-to-one correspondence with divergence-free matrices and convex functions s(x)s(x) over the domain Ω\Omega. Although homogenization is a non-linear and non-injective operator when applied directly to conductivity coefficients, homogenization becomes a linear interpolation operator over triangulations of Ω\Omega when re-expressed using convex functions, and is a volume averaging operator when re-expressed with divergence-free matrices. Using optimal weighted Delaunay triangulations for linearly interpolating convex functions, we obtain an optimally robust homogenization algorithm for arbitrary rough coefficients. Next, we consider inverse homogenization and show how to decompose it into a linear ill-posed problem and a well-posed non-linear problem. We apply this new geometric approach to Electrical Impedance Tomography (EIT). It is known that the EIT problem admits at most one isotropic solution. If an isotropic solution exists, we show how to compute it from any conductivity having the same boundary Dirichlet-to-Neumann map. It is known that the EIT problem admits a unique (stable with respect to GG-convergence) solution in the space of divergence-free matrices. As such we suggest that the space of convex functions is the natural space in which to parameterize solutions of the EIT problem

    Electrical impedance tomography: methods and applications

    Get PDF

    Structure-aware Dual-branch Network for Electrical Impedance Tomography in Cell Culture Imaging

    Get PDF

    Tomografía de impedancia eléctrica: fundamentos de hardware y aplicaciones médicas

    Get PDF
    Introduction: The following article shows a systematic review of publications on hardware topologies used to capture and process electrical signals used in Electrical Impedance Tomography (EIT) in medical applications, as well topicality of the EIT in the field of biomedicine. This work is the product of the research project “Electrical impedance tomography based on mixed signal devices”, which took place at the University of Cauca during the period 2017-2019. Objective: This review describes the operation, topicality and clinical use of Electrical Impedance Tomography systems. Methodology: A systematic review was carried out in the IEEE-Xplore, ScienceDirect and Scopus databases. After the classification, 106 relevant articles were obtained on scientific studies of EIT systems; applications dedicated to the analysis of medical images. Conclusions: Impedance-based methods have a variety of medical applications as they allow for the reconstruction of a body region, by estimating the conductivity distribution inside the human body; this is without exposing the patient to the damaging effects of radiation and contrast elements. Impedance-based methods are therefore a very useful and versatile tool in the treatment of diseases such as: monitoring blood pressure, detection of atherosclerosis, localization of intracranial hemorrhages, determining bone density, among others. Originality: It describes the necessary components to design an EIT system, as well as the design characteristics depending on the pathology to be visualized.  Introducción: En el siguiente artículo se muestra una revisión sistemática de publicaciones sobre topologías hardware utilizadas para capturar y procesar señales eléctricas utilizadas en tomografía por impedancia eléctrica (TIE) en aplicaciones médicas, así como la actualidad del TIE en el campo de la biomedicina. Este trabajo es producto del proyecto de investigación “Tomografía de impedancia eléctrica basada en dispositivo de señal mixta”, que tiene lugar en la Universidad del Cauca durante el período 2017-2019.   Objetivo: Esta revisión describe la estructura hardware de los sistemas de TIE, además de sus características, como frecuencia y magnitud de señales de corriente, patrones de inyección y medición de señales y número de electrodos orientado a, uso clínico.   Metodología: Se realizó una revisión sistemática, en las bases de datos IEEE-Xplore, ScienceDirect y Scopus. Tras la clasificación se obtuvo 106 artículos relevantes sobre estudios científicos de sistemas, aplicaciones dedicadas al análisis de imágenes médicas.   Conclusión: Los métodos basados en impedancia, tienen una variedad de aplicaciones médicas, puesto que permite la reconstrucción de una región corporal, mediante la estimación de la distribución de conductividad al interior del cuerpo humano, sin radiación y elementos de contraste, tan perjudiciales para la salud de los pacientes; convirtiéndola en una herramienta muy útil y versátil en el tratamiento de enfermedades como: monitorear la presión arterial, detección de arterosclerosis, localización de hemorragias intracraneales, determinar la densidad ósea, entre otras.     &nbsp
    corecore