10,418 research outputs found

    Super-Resolution of Mutually Interfering Signals

    Full text link
    We consider simultaneously identifying the membership and locations of point sources that are convolved with different low-pass point spread functions, from the observation of their superpositions. This problem arises in three-dimensional super-resolution single-molecule imaging, neural spike sorting, multi-user channel identification, among others. We propose a novel algorithm, based on convex programming, and establish its near-optimal performance guarantee for exact recovery by exploiting the sparsity of the point source model as well as incoherence between the point spread functions. Numerical examples are provided to demonstrate the effectiveness of the proposed approach.Comment: ISIT 201

    Miniaturized Computational Photonic Molecule Spectrometer

    Full text link
    Miniaturized spectrometry system is playing an essential role for materials analysis in the development of in-situ or portable sensing platforms across research and industry. However, there unavoidably exists trade-offs between the resolution and operation bandwidth as the device scale down. Here, we report an extreme miniaturized computational photonic molecule (PM) spectrometer utilizing the diverse spectral characteristics and mode-hybridization effect of split eigenfrequencies and super-modes, which effectively eliminates the inherent periodicity and expands operation bandwidth with ultra-high spectral resolution. These results of dynamic control of the frequency, amplitude, and phase of photons in the photonic multi-atomic systems, pave the way to the development of benchtop sensing platforms for applications previously unfeasible due to resolution-bandwidth-footprint limitations, such as in gas sensing or nanoscale biomedical sensing

    The No-Scale Multiverse at the LHC

    Full text link
    We present a contemporary perspective on the String Landscape and the Multiverse of plausible string, M- and F-theory vacua, seeking to demonstrate a non-zero probability for the existence of a universe matching our own observed physics within the solution ensemble, arguing for the importance of No-Scale Supergravity as an essential common underpinning. Our context is a highly detailed phenomenological probe of No-Scale F-SU(5), a model representing the intersection of the F-lipped SU(5) X U(1)_X Grand Unified Theory (GUT) with extra TeV-Scale vector-like multiplets derived out of F-theory, and the dynamics of No-Scale Supergravity. We present a highly constrained "Golden" region with tan(beta) \sim 15, m_t = 173.0 - 174.4 GeV, M_1/2 = 455 - 481 GeV, and M_V = 691 - 1020 GeV, which simultaneously satisfies all known experimental constraints. We supplement this bottom-up phenomenological perspective with a top-down theoretical analysis of the one-loop effective Higgs potential, achieving a striking consonance via the dynamic determination of tan(beta) and M_1/2 at the local secondary minimization of the spontaneously broken electroweak Higgs vacuum V_min. We present the distinctive signatures of No-Scale F-SU(5) at the LHC, where a light stop and gluino are expected to generate a surplus of ultra-high multiplicity (>= 9) hadronic jet events. We propose modest alterations to the canonical background selection cut strategy which would enhance resolution of these events, while readily suppressing the contribution of all Standard Model processes, and allowing a clear differentiation from competing models of new physics. Detection by the LHC of the ultra-high jet signal would constitute a suggestive evocation of the intimately linked stringy origins of F-SU(5), and could provide a glimpse into the fundamental string moduli, and possibly even the workings of the No-Scale Multiverse.Comment: A review of recent work, submitted to the DICE 2010 Workshop proceedings, based on the invited talk by D.V.N. (20 Pages, 5 Tables, 18 Figures

    Entanglement, intractability and no-signaling

    Full text link
    We consider the problem of deriving the no-signaling condition from the assumption that, as seen from a complexity theoretic perspective, the universe is not an exponential place. A fact that disallows such a derivation is the existence of {\em polynomial superluminal} gates, hypothetical primitive operations that enable superluminal signaling but not the efficient solution of intractable problems. It therefore follows, if this assumption is a basic principle of physics, either that it must be supplemented with additional assumptions to prohibit such gates, or, improbably, that no-signaling is not a universal condition. Yet, a gate of this kind is possibly implicit, though not recognized as such, in a decade-old quantum optical experiment involving position-momentum entangled photons. Here we describe a feasible modified version of the experiment that appears to explicitly demonstrate the action of this gate. Some obvious counter-claims are shown to be invalid. We believe that the unexpected possibility of polynomial superluminal operations arises because some practically measured quantum optical quantities are not describable as standard quantum mechanical observables.Comment: 17 pages, 2 figures (REVTeX 4
    corecore