308 research outputs found

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1

    Theory and Design of a Highly Compressed Dropped-Channel Polarimetric Synthetic Aperture Radar

    Get PDF
    Compressed sensing (CS) is a recent mathematical technique that leverages the sparsity in certain sets of data to solve an underdetermined system and recover a full set of data from a sub-Nyquist set of measurements of the data. Given the size and sparsity of the data, radar has been a natural choice to apply compressed sensing to, typically in the fast-time and slow-time domains. Polarimetric synthetic aperture radar (PolSAR) generates a particularly large amount of data for a given scene; however, the data tends to be sparse. Recently a technique was developed to recover a dropped PolSAR channel by leveraging antenna crosstalk information and using compressed sensing. In this dissertation, we build upon the initial concept of the dropped-channel PolSAR CS in three ways. First, we determine a metric which relates the measurement matrix to the l2 recovery error. The new metric is necessary given the deterministic nature of the measurement matrix. We then determine a range of antenna crosstalk required to recover a dropped PolSAR channel. Second, we propose a new antenna design that incorporates the relatively high levels of crosstalk required by a dropped-channel PolSAR system. Finally, we integrate fast- and slow-time compression schemes into the dropped-channel model in order to leverage sparsity in additional PolSAR domains and overall increase the compression ratio. The completion of these research tasks has allowed a more accurate description of a PolSAR system that compresses in fast-time, slow-time, and polarization; termed herein as highly compressed PolSAR. The description of a highly compressed PolSAR system is a big step towards the development of prototype hardware in the future

    Advanced signal processing solutions for ATR and spectrum sharing in distributed radar systems

    Get PDF
    Previously held under moratorium from 11 September 2017 until 16 February 2022This Thesis presents advanced signal processing solutions for Automatic Target Recognition (ATR) operations and for spectrum sharing in distributed radar systems. Two Synthetic Aperture Radar (SAR) ATR algorithms are described for full- and single-polarimetric images, and tested on the GOTCHA and the MSTAR datasets. The first one exploits the Krogager polarimetric decomposition in order to enhance peculiar scattering mechanisms from manmade targets, used in combination with the pseudo-Zernike image moments. The second algorithm employs the Krawtchouk image moments, that, being discrete defined, provide better representations of targets’ details. The proposed image moments based framework can be extended to the availability of several images from multiple sensors through the implementation of a simple fusion rule. A model-based micro-Doppler algorithm is developed for the identification of helicopters. The approach relies on the proposed sparse representation of the signal scattered from the helicopter’s rotor and received by the radar. Such a sparse representation is obtained through the application of a greedy sparse recovery framework, with the goal of estimating the number, the length and the rotation speed of the blades, parameters that are peculiar for each helicopter’s model. The algorithm is extended to deal with the identification of multiple helicopters flying in formation that cannot be resolved in another domain. Moreover, a fusion rule is presented to integrate the results of the identification performed from several sensors in a distributed radar system. Tests performed both on simulated signals and on real signals acquired from a scale model of a helicopter, confirm the validity of the algorithm. Finally, a waveform design framework for joint radar-communication systems is presented. The waveform is composed by quasi-orthogonal chirp sub-carriers generated through the Fractional Fourier Transform (FrFT), with the aim of preserving the radar performance of a typical Linear Frequency Modulated (LFM) pulse while embedding data to be sent to a cooperative system. Techniques aimed at optimise the design parameters and mitigate the Inter-Carrier Interference (ICI) caused by the quasiorthogonality of the chirp sub-carriers are also described. The FrFT based waveform is extensively tested and compared with Orthogonal Frequency Division Multiplexing (OFDM) and LFM waveforms, in order to assess both its radar and communication performance.This Thesis presents advanced signal processing solutions for Automatic Target Recognition (ATR) operations and for spectrum sharing in distributed radar systems. Two Synthetic Aperture Radar (SAR) ATR algorithms are described for full- and single-polarimetric images, and tested on the GOTCHA and the MSTAR datasets. The first one exploits the Krogager polarimetric decomposition in order to enhance peculiar scattering mechanisms from manmade targets, used in combination with the pseudo-Zernike image moments. The second algorithm employs the Krawtchouk image moments, that, being discrete defined, provide better representations of targets’ details. The proposed image moments based framework can be extended to the availability of several images from multiple sensors through the implementation of a simple fusion rule. A model-based micro-Doppler algorithm is developed for the identification of helicopters. The approach relies on the proposed sparse representation of the signal scattered from the helicopter’s rotor and received by the radar. Such a sparse representation is obtained through the application of a greedy sparse recovery framework, with the goal of estimating the number, the length and the rotation speed of the blades, parameters that are peculiar for each helicopter’s model. The algorithm is extended to deal with the identification of multiple helicopters flying in formation that cannot be resolved in another domain. Moreover, a fusion rule is presented to integrate the results of the identification performed from several sensors in a distributed radar system. Tests performed both on simulated signals and on real signals acquired from a scale model of a helicopter, confirm the validity of the algorithm. Finally, a waveform design framework for joint radar-communication systems is presented. The waveform is composed by quasi-orthogonal chirp sub-carriers generated through the Fractional Fourier Transform (FrFT), with the aim of preserving the radar performance of a typical Linear Frequency Modulated (LFM) pulse while embedding data to be sent to a cooperative system. Techniques aimed at optimise the design parameters and mitigate the Inter-Carrier Interference (ICI) caused by the quasiorthogonality of the chirp sub-carriers are also described. The FrFT based waveform is extensively tested and compared with Orthogonal Frequency Division Multiplexing (OFDM) and LFM waveforms, in order to assess both its radar and communication performance

    Coding of synthetic aperture radar data

    Get PDF

    Non-convex regularization in remote sensing

    Get PDF
    In this paper, we study the effect of different regularizers and their implications in high dimensional image classification and sparse linear unmixing. Although kernelization or sparse methods are globally accepted solutions for processing data in high dimensions, we present here a study on the impact of the form of regularization used and its parametrization. We consider regularization via traditional squared (2) and sparsity-promoting (1) norms, as well as more unconventional nonconvex regularizers (p and Log Sum Penalty). We compare their properties and advantages on several classification and linear unmixing tasks and provide advices on the choice of the best regularizer for the problem at hand. Finally, we also provide a fully functional toolbox for the community.Comment: 11 pages, 11 figure

    Advances in Motion Estimators for Applications in Computer Vision

    Get PDF
    abstract: Motion estimation is a core task in computer vision and many applications utilize optical flow methods as fundamental tools to analyze motion in images and videos. Optical flow is the apparent motion of objects in image sequences that results from relative motion between the objects and the imaging perspective. Today, optical flow fields are utilized to solve problems in various areas such as object detection and tracking, interpolation, visual odometry, etc. In this dissertation, three problems from different areas of computer vision and the solutions that make use of modified optical flow methods are explained. The contributions of this dissertation are approaches and frameworks that introduce i) a new optical flow-based interpolation method to achieve minimally divergent velocimetry data, ii) a framework that improves the accuracy of change detection algorithms in synthetic aperture radar (SAR) images, and iii) a set of new methods to integrate Proton Magnetic Resonance Spectroscopy (1HMRSI) data into threedimensional (3D) neuronavigation systems for tumor biopsies. In the first application an optical flow-based approach for the interpolation of minimally divergent velocimetry data is proposed. The velocimetry data of incompressible fluids contain signals that describe the flow velocity. The approach uses the additional flow velocity information to guide the interpolation process towards reduced divergence in the interpolated data. In the second application a framework that mainly consists of optical flow methods and other image processing and computer vision techniques to improve object extraction from synthetic aperture radar images is proposed. The proposed framework is used for distinguishing between actual motion and detected motion due to misregistration in SAR image sets and it can lead to more accurate and meaningful change detection and improve object extraction from a SAR datasets. In the third application a set of new methods that aim to improve upon the current state-of-the-art in neuronavigation through the use of detailed three-dimensional (3D) 1H-MRSI data are proposed. The result is a progressive form of online MRSI-guided neuronavigation that is demonstrated through phantom validation and clinical application.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Mixed Compressive Sensing Back-Projection for SAR Focusing on Geocoded Grid

    Get PDF
    This article presents a new scheme called 2-D mixed compressive sensing back-projection (CS-BP-2D), for synthetic aperture radar (SAR) imaging on a geocoded grid, in a single measurement vector frame. The back-projection linear operator is derived in matrix form and a patched-based approach is proposed for reducing the dimensions of the dictionary. Spatial compressibility of the radar image is exploited by constructing the sparsity basis using the back-projection focusing framework and fast solving the reconstruction problem through the orthogonal matching pursuit algorithm. An artifact reduction filter inspired by the synthetic point spread function is used in postprocessing. The results are validated for simulated and real-world SAR data. Sentinel-1 C-band raw data in both monostatic and space-borne transmitter/stationary receiver bistatic configurations are tested. We show that CS-BP-2D can focus both monostatic and bistatic SAR images, using fewer measurements than the classical approach, while preserving the amplitude, the phase, and the position of the targets. Furthermore, the SAR image quality is enhanced and also the storage burden is reduced by storing only the recovered complex-valued points and their corresponding locations

    Novel methods for SAR imaging problems

    Get PDF
    Ankara : The Department of Electrical and Electronics Engineering and the Graduate School of Engineering and Science of Bilkent University, 2013.Thesis (Ph. D.) -- Bilkent University, 2013.Includes bibliographical references leaves 62-70.Synthetic Aperture Radar (SAR) provides high resolution images of terrain reflectivity. SAR systems are indispensable in many remote sensing applications. High resolution imaging of terrain requires precise position information of the radar platform on its flight path. In target detection and identification applications, imaging of sparse reflectivity scenes is a requirement. In this thesis, novel SAR image reconstruction techniques for sparse target scenes are developed. These techniques differ from earlier approaches in their ability of simultaneous image reconstruction and motion compensation. It is shown that if the residual phase error after INS/GPS corrected platform motion is captured in the signal model, then the optimal autofocused image formation can be formulated as a sparse reconstruction problem. In the first proposed technique, Non-Linear Conjugate Gradient Descent algorithm is used to obtain the optimum reconstruction. To increase robustness in the reconstruction, Total Variation penalty is introduced into the cost function of the optimization. To reduce the rate of A/D conversion and memory requirements, a specific under sampling pattern is introduced. In the second proposed technique, Expectation Maximization Based Matching Pursuit (EMMP) algorithm is utilized to obtain the optimum sparse SAR reconstruction. EMMP algorithm is greedy and computationally less complex resulting in fast SAR image reconstructions. Based on a variety of metrics, performances of the proposed techniques are compared. It is observed that the EMMP algorithm has an additional advantage of reconstructing off-grid targets by perturbing on-grid basis vectors on a finer grid.Uğur, SalihPh.D
    corecore