248 research outputs found

    Subdegree growth rates of infinite primitive permutation groups

    Get PDF
    A transitive group GG of permutations of a set Ω\Omega is primitive if the only GG-invariant equivalence relations on Ω\Omega are the trivial and universal relations. If α∈Ω\alpha \in \Omega, then the orbits of the stabiliser GαG_\alpha on Ω\Omega are called the α\alpha-suborbits of GG; when GG acts transitively the cardinalities of these α\alpha-suborbits are the subdegrees of GG. If GG acts primitively on an infinite set Ω\Omega, and all the suborbits of GG are finite, Adeleke and Neumann asked if, after enumerating the subdegrees of GG as a non-decreasing sequence 1=m0≀m1≀...1 = m_0 \leq m_1 \leq ..., the subdegree growth rates of infinite primitive groups that act distance-transitively on locally finite distance-transitive graphs are extremal, and conjecture there might exist a number cc which perhaps depends upon GG, perhaps only on mm, such that mr≀c(m−2)r−1m_r \leq c(m-2)^{r-1}. In this paper it is shown that such an enumeration is not desirable, as there exist infinite primitive permutation groups possessing no infinite subdegree, in which two distinct subdegrees are each equal to the cardinality of infinitely many suborbits. The examples used to show this provide several novel methods for constructing infinite primitive graphs. A revised enumeration method is then proposed, and it is shown that, under this, Adeleke and Neumann's question may be answered, at least for groups exhibiting suitable rates of growth.Comment: 41 page

    On Directed Feedback Vertex Set parameterized by treewidth

    Get PDF
    We study the Directed Feedback Vertex Set problem parameterized by the treewidth of the input graph. We prove that unless the Exponential Time Hypothesis fails, the problem cannot be solved in time 2o(tlog⁡t)⋅nO(1)2^{o(t\log t)}\cdot n^{\mathcal{O}(1)} on general directed graphs, where tt is the treewidth of the underlying undirected graph. This is matched by a dynamic programming algorithm with running time 2O(tlog⁡t)⋅nO(1)2^{\mathcal{O}(t\log t)}\cdot n^{\mathcal{O}(1)}. On the other hand, we show that if the input digraph is planar, then the running time can be improved to 2O(t)⋅nO(1)2^{\mathcal{O}(t)}\cdot n^{\mathcal{O}(1)}.Comment: 20

    Approximating the Minimum Equivalent Digraph

    Full text link
    The MEG (minimum equivalent graph) problem is, given a directed graph, to find a small subset of the edges that maintains all reachability relations between nodes. The problem is NP-hard. This paper gives an approximation algorithm with performance guarantee of pi^2/6 ~ 1.64. The algorithm and its analysis are based on the simple idea of contracting long cycles. (This result is strengthened slightly in ``On strongly connected digraphs with bounded cycle length'' (1996).) The analysis applies directly to 2-Exchange, a simple ``local improvement'' algorithm, showing that its performance guarantee is 1.75.Comment: conference version in ACM-SIAM Symposium on Discrete Algorithms (1994

    Quantum Hall Ground States, Binary Invariants, and Regular Graphs

    Full text link
    Extracting meaningful physical information out of a many-body wavefunction is often impractical. The polynomial nature of fractional quantum Hall (FQH) wavefunctions, however, provides a rare opportunity for a study by virtue of ground states alone. In this article, we investigate the general properties of FQH ground state polynomials. It turns out that the data carried by an FQH ground state can be essentially that of a (small) directed graph/matrix. We establish a correspondence between FQH ground states, binary invariants and regular graphs and briefly introduce all the necessary concepts. Utilizing methods from invariant theory and graph theory, we will then take a fresh look on physical properties of interest, e.g. squeezing properties, clustering properties, etc. Our methodology allows us to `unify' almost all of the previously constructed FQH ground states in the literature as special cases of a graph-based class of model FQH ground states, which we call \emph{accordion} model FQH states

    Further topics in connectivity

    Get PDF
    Continuing the study of connectivity, initiated in §4.1 of the Handbook, we survey here some (sufficient) conditions under which a graph or digraph has a given connectivity or edge-connectivity. First, we describe results concerning maximal (vertex- or edge-) connectivity. Next, we deal with conditions for having (usually lower) bounds for the connectivity parameters. Finally, some other general connectivity measures, such as one instance of the so-called “conditional connectivity,” are considered. For unexplained terminology concerning connectivity, see §4.1.Peer ReviewedPostprint (published version
    • 

    corecore