48,699 research outputs found

    Self-Tuned Deep Super Resolution

    Full text link
    Deep learning has been successfully applied to image super resolution (SR). In this paper, we propose a deep joint super resolution (DJSR) model to exploit both external and self similarities for SR. A Stacked Denoising Convolutional Auto Encoder (SDCAE) is first pre-trained on external examples with proper data augmentations. It is then fine-tuned with multi-scale self examples from each input, where the reliability of self examples is explicitly taken into account. We also enhance the model performance by sub-model training and selection. The DJSR model is extensively evaluated and compared with state-of-the-arts, and show noticeable performance improvements both quantitatively and perceptually on a wide range of images

    Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution

    Full text link
    Convolutional neural networks have recently demonstrated high-quality reconstruction for single-image super-resolution. In this paper, we propose the Laplacian Pyramid Super-Resolution Network (LapSRN) to progressively reconstruct the sub-band residuals of high-resolution images. At each pyramid level, our model takes coarse-resolution feature maps as input, predicts the high-frequency residuals, and uses transposed convolutions for upsampling to the finer level. Our method does not require the bicubic interpolation as the pre-processing step and thus dramatically reduces the computational complexity. We train the proposed LapSRN with deep supervision using a robust Charbonnier loss function and achieve high-quality reconstruction. Furthermore, our network generates multi-scale predictions in one feed-forward pass through the progressive reconstruction, thereby facilitates resource-aware applications. Extensive quantitative and qualitative evaluations on benchmark datasets show that the proposed algorithm performs favorably against the state-of-the-art methods in terms of speed and accuracy.Comment: This work is accepted in CVPR 2017. The code and datasets are available on http://vllab.ucmerced.edu/wlai24/LapSRN

    Cygnus A super-resolved via convex optimisation from VLA data

    Get PDF
    We leverage the Sparsity Averaging Reweighted Analysis (SARA) approach for interferometric imaging, that is based on convex optimisation, for the super-resolution of Cyg A from observations at the frequencies 8.422GHz and 6.678GHz with the Karl G. Jansky Very Large Array (VLA). The associated average sparsity and positivity priors enable image reconstruction beyond instrumental resolution. An adaptive Preconditioned Primal-Dual algorithmic structure is developed for imaging in the presence of unknown noise levels and calibration errors. We demonstrate the superior performance of the algorithm with respect to the conventional CLEAN-based methods, reflected in super-resolved images with high fidelity. The high resolution features of the recovered images are validated by referring to maps of Cyg A at higher frequencies, more precisely 17.324GHz and 14.252GHz. We also confirm the recent discovery of a radio transient in Cyg A, revealed in the recovered images of the investigated data sets. Our matlab code is available online on GitHub.Comment: 14 pages, 7 figures (3/7 animated figures), accepted for publication in MNRA

    The Terzan 5 puzzle: discovery of a third, metal-poor component

    Full text link
    We report on the discovery of 3 metal-poor giant stars in Terzan 5, a complex stellar system in the the Galactic bulge, known to have two populations at [Fe/H]=-0.25 and +0.3. For these 3 stars we present new echelle spectra obtained with NIRSPEC at Keck II, which confirm their radial velocity membership and provide average [Fe/H]=-0.79 dex iron abundance and [alpha/Fe]=+0.36 dex enhancement. This new population extends the metallicity range of Terzan~5 0.5 dex more metal poor, and it has properties consistent with having formed from a gas polluted by core collapse supernovae.Comment: Accepted for publication on ApJ Lette
    • …
    corecore